

Status: Resonances in $\overline{p}p \to \overline{\Xi}^+ \Xi^- \pi^0$

Nov 8, 2018 | Albrecht Gillitzer

PANDA Collaboration Meeting 3/18, GSI Darmstadt

Review: Resonances in $\overline{p}p \to \overline{\Xi}^+\Xi^-\pi^0$

 \overline{p}

- $p_{\bar{p}} = 4.6 \text{ GeV}/c$
- Contributing states:
 - $\Xi(1530)$
 - E(1690)
 - E(1820)
- Phase Space
- 4 M $\Xi^+\Xi^-\pi^0$ continuum
- 5 M Ξ*-, Ξ̄*+ & cont.
- Release Note submitted in March (status: pending)

Results: $\overline{p}p \to \overline{\Xi}^+\Xi^-\pi^0$ Continuum

→ PANDA has *perfectly flat acceptance* for the 3-body final state

Results: $\overline{p}p \to \overline{\Xi}^+\Xi^-\pi^0$ with Resonances

 \rightarrow All Ξ^{*-} , $\bar{\Xi}^{*+}$ states clearly seen in reconstructed sample

Summary Slide March Meeting

- comprehensive analysis of 4.6 GeV/c $\bar{p}p \to \bar{\Xi}^+ \Xi^- \pi^0$ including background studies
- over-all reconstruction efficiency: ~3.5 %
- π^0 reconstruction significantly contributes to efficiency losses (~43% MC true) and to ,fake' combinations in the final data sample (~5%)
- acceptance and reconstruction uniform across $\bar{\Xi}^+ \Xi^- \pi^0$ phase space
- 22 M DPM background events → S/B > 4.6
- 6.6 M $\bar{p}p\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0}$ events \rightarrow S/B = 47
- release note ready for distribution to the collaboration (03/2018)

What to Improve?

- 1) Too much combinatorial background in π^0 candidates
- 2) Ideal PID
- 3) Ideal Pattern Recognition (with ≥ 4 hits in inner tracking det.)
- 4) Problems in PndKinVtxFitter and PndKin4CFitter: χ^2 / problems distribution, constraint not always fulfilled

Problems in Photon Reconstruction

photon energy cut $E_{\gamma} > 15 \text{ MeV}$

 π^0 coarse mass cut $|M_{\rm cand}-m_\pi|<50~{
m MeV}$

Problems in Photon Reconstruction

- Many ,non-photon' neutral candidates
- Enhanced at low photon energies
- Huge combinatorial background in π^0 candidates
 - too many fake π^0 candidates
 - some true π^0 candidates not found

How to Get the Photon Time?

New simulation with pandaroot #30122,30127

RhoCandidate → RecoCandidate → EmcCluster (digi_file) → TimeStamp, Position (using FairLinks)

- > time and flightpath for neutral candidates
- new simulation:
 - p = 4.6 GeV/c
 - 4.4 M $\overline{\Xi}^+\Xi^-\pi^0$ continuum events
 - 5 M $\overline{\Xi}^+\Xi^-\pi^0$ events with resonances

- 1) Analysis of EmcCluster Time
- 2) Analysis of EmcHits
- 3) Analysis of EmcPoints
- 4) Use EmcCluster Time with Corrected Position

4.4 M events Neutral Candidate EmcHit: Time vs Flightpath

true gamma ≡ true signal photons!

4.4 M events Neutral Candidate EmcHit: Velocity in cm/ns

true gamma ≡ true signal photons!

Conclusion from 1st Step

- large fraction of neutral candidates has velocities < 30 cm/ns
- true primary photons are close to v=c, but some seem to be too fast or too slow
- mismatch between time and position
- \triangleright better look at $\Delta t = t t_{v=c}$

New Analysis of EmcHit Information (sim_complete.root)

- find MC track for each EmcHit
- loop over all MC Tracks with higher track numbers and find daughter track → interaction
- idea: use start position and start time of daughter track for velocity determination if inside crystal

start position of MC tracks creating an EmcHit

position of EmcHits (T.S.): defined by crystal center

Position of interactions of MC tracks causing an EmcHit

Position of interactions of primary photon MC tracks

Conclusion from 2nd & 3rd Step

- position of first EmcPoint and first interaction are in general not identical
- there are EmcPoints with & without interaction
- there are MC tracks which continue downstream of an interaction
- in most cases the EmcHit time is close (~10 ... 50 ps) to the time of the first EmcPoint
- in most cases the first EmcPoint is very close (~ mm ... ~1 cm) to the crystal surface

Analysis with Corrected EmcCluster Position

- Solution without need to analyze EmcPoints (sim_file.root):
 - shift EmcCluster position by fixed Δs towards IP
 - $\Delta s = -0.45 \times L_{\text{cryst}}$
 - $L_{\text{cryst}} = 20 \text{ cm}$ for TS PWO, $L_{\text{cryst}} = 68 \text{ cm}$ for FS Shashlyk
- Two analyses: (1) no time smearing, (2) 1 ns time smearing

Time Difference

$$T-T_{v=c}$$
 [ns]:

$$\sigma_{\text{ToF}} = 0 \text{ ns}$$

$$T - T_{v=c}$$
 [ns]
 $\sigma_{ToF} = 1$ ns

→ photon selection:

$$\Delta t Cut T - T_{v=c} < 3 ns$$

Effect of T-T_c Cut: π^0 Cand Multiplicity $\sigma_{ToF} = 1$ ns

 \rightarrow Number of raw π^0 candidates significantly reduced

T-T_c Cut: π^0 Cands Passing Mass Fit ($\sigma_{ToF} = 1 \text{ ns}$)

 \rightarrow Reduced number of π^0 candidates per generated event:

old: 18.7%, new: 16.1% ($\sigma_{ToF} = 1 \text{ ns}$)

no smearing: 16.2%

Nov 8, 2018 Albrecht Gillitzer p. 24

T-T_c Cut: π^0 'Good' Cands after Mass Fit ($\sigma_{ToF} = 1 \text{ ns}$)

- ightarrow fraction of π^0 ,good' candidates after m.c.fit increased
- → ratio ,good'/all increased from 59.2% to 80.4%

Nov 8, 2018 Albrecht Gillitzer p. 25

$T - T_c$ Cut: McTruth Cands in Final Signal ($\sigma_{ToF} = 1 \text{ ns}$)

 \rightarrow final reco eff. increased from 3.48% to 3.91% McTruth* fraction in π^0 increased from 94.9% to 97.2%!

Nov 8, 2018 Albrecht Gillitzer p. 26

^{*} incl. conv.

Reconstr. ,final' $\bar{\Xi}^+ \Xi^- \pi^0$ Dalitz Plot

a) old: 137,286 evts / 4.0 M

b) $\sigma_T = 0 \text{ ns}$: 170,533 evts / 4.4 M

c) $\sigma_T = 1 \text{ ns}$: 169,790 evts / 4.4 M

c) / b) = 99.85%

Conclusion & Outlook

- Using EMC time information significantly improves π^0 reconstruction
- Still true with time smearing $\sigma_T = 1 \text{ ns}$
- Next:
 - use decay tree fitter (close to completion)
 - use realistic PID
 - repeat analysis with new PandaRoot version

Backup

Analysis of EMC Hits: Time Spectra

• negative Δt values & tail to larger positive Δt values

Position of interactions of MC tracks causing an EmcHit

Position of interactions of primary photon MC tracks