

Study of the Reaction

$$\overline{\mathbf{p}}\mathbf{p} \to \mathbf{\Xi}^{-}\overline{\mathbf{\Xi}}^{+}\pi^{+}\pi^{-}$$

8 November 2018 | Alessandra Lai | Forschungszentrum Jülich

Motivation For the Study

- missing resonances and lack of unique model to describe baryon spectra
- so far: focus on Δ and nucleons (photo-induced reactions)
- scarce data for baryons with strange content (worse for multi-strange)

Particle	J^P	Overall Status
Ξ (1318)	1/2+	****
Ξ (1530)	3/2+	****
Ξ (1620)	,	*
Ξ (1690)		***
Ξ (1820)	3/2-	***
Ξ (1950)	,	***
Ξ (2030)		***
Ξ (2120)		*
Ξ (2250)		**
Ξ (2370)		**
Ξ (2500)		*

Status of Ξ resonances from PDG. Stars indicate evidence of existence. Nothing relevant added since 1988.

Technical Details

- 3816000 events generated
- fairsoft: may16p1
- fairroot: 17.10b
- pandaroot: commit 703b4830f (a.k.a. rev. 30123)
- $p = 4.6 \, \text{GeV/c} \rightarrow \sqrt{s} = 3.25 \, \text{GeV}$ ($\sim 300 \, \text{MeV}$ above $\Xi\Xi\pi\pi$ production threshold)

$\overline{p}p \to$		$\rightarrow \overline{\Xi}^{+}\Xi^{-}\pi^{+}\pi^{-}$
$\overline{p}p \to$	$\Xi^{-}(1690)^{*}\overline{\Xi}^{+}$ (+ c.c.)	$\rightarrow \overline{\Xi}^{+}\Xi^{-}\pi^{+}\pi^{-}$
$\overline{p}p \to$	$\Xi^{-}(1820)^{*}\overline{\Xi}^{+}$ (+ c.c.)	$\rightarrow \overline{\Xi}^{+}\Xi^{-}\pi^{+}\pi^{-}$
$\overline{p}p \to$	$\Xi^{0}(1530)^{*}\overline{\Xi}^{+}\pi^{-} (+ \text{c.c.})$	$\rightarrow \overline{\Xi}^{+}\Xi^{-}\pi^{+}\pi^{-}$
$\overline{p}p \to$	$\Xi^{0}(1690)^{*}\overline{\Xi}^{+}\pi^{-} (+ \text{c.c.})$	$\rightarrow \overline{\Xi}^{+}\Xi^{-}\pi^{+}\pi^{-}$
$\overline{p}p \rightarrow$	$\overline{\Xi}^{0}(1530)^{*}\Xi^{0}(1530)^{*}$	$\rightarrow \overline{\Xi}^{+}\Xi^{-}\pi^{+}\pi^{-}$
$\overline{p}p \to$	$\Xi^{0}(1530)^{*}\Xi^{0}(1690)^{*}$	$\rightarrow \overline{\Xi}^{+}\Xi^{-}\pi^{+}\pi^{-}$
$\overline{p}p \to $	$\overline{\Xi}^0(1690)^*\Xi^0(1530)^*$	$\rightarrow \overline{\Xi}^{+}\Xi^{-}\pi^{+}\pi^{-}$

- Ξ decay in GEANT4 (account for interaction with detector volume and B

 field)
- Λ , $\overline{\Lambda} \rightarrow p\pi$ (100%)
- uniform phase space distribution for all decays
- ideal tracking (displaced vertices)
- track filtering corrects for non-realistic reco of tracks with low multiplicity (#hits

 4 in MVD or STT or GEM)
- ideal PID

Reconstruction of Final State Stable Particles

- selection of the *signal* particles genealogy information (MC)
- transverse VS longitudinal momentum distribution
- polar angle VS total momentum distribution

Reconstruction of Final State Stable Particles

■ momentum resolution: $\frac{\Delta p}{p} = \frac{p - p^{MC}}{p^{MC}}$

Take inner σ of double Gaussian fit

Drop at low momenta: most likely due to π hypothesis in Kalman filter

Reconstruction of the Final State Stable Particles

	р	<i>π</i> (Λ)	$\pi \ (\Xi)$	π prompt
$\epsilon_{\it reco}$	83 %	70 %	75 %	94 %
σ_{p}/p	1.50 %	1.47 %	1.34 %	1.36 %

- best efficiency for prompt π (primary vertex), worse for π (Λ) (displaced vertices)
- \blacksquare $\prod_{i=1}^{8} \epsilon = 17\%$

14 % of MC events are complete (i.e., all 8 f.s. charged tracks) \rightarrow negative correlation

- best momentum resolution for π (Ξ), worse for p → expected: p_z p > p_z π
- consistent results for particle/antiparticle

Reconstruction of the Prompt Dipion System

■ selection of $\pi^+\pi^-$ system coming from the primary vertex \rightarrow vertex fit (RhoKinVtxFitter)

- rising profile towards high probability
- coarse prob. cut (1 \times 10⁻⁴) and select candidate with smaller χ^2
- vertex resolution (FWHM): 0.5 mm in x, y; 1 mm in z
- $\epsilon = 65\%$; purity = 96 %

Reconstruction of Λ , $\overline{\Lambda}$

- combination of daughter particles ($p\pi$)
- mass window cut $m_{\Lambda} \pm 150 \,\mathrm{MeV/c^2}$
- vertex fit RhoKinVtxFitter (cut 1 × 10⁻⁴) similar to observed distributions for the prompt dipion system
- mass fit RhoKinFitter (cut 1×10^{-4})
- best cand. passed both probability cuts and has the smallest χ^2

Reconstruction of Λ , Λ

- $\epsilon = 54 \%$; purity = 82 %
- decay vertex resolution (FWHM): 0.1 mm in x, y; 0.5 mm in z
- \blacksquare momentum resolution (inner σ of double Gaussian fit): 1.42 %
- invariant mass resolution, after vertex fit (inner σ of double Gaussian fit): 2.0 MeV/c²
- consistent results for Λ and $\overline{\Lambda}$

Reconstruction of Λ , $\overline{\Lambda}$

invariant mass distribution after mass fit

- 0.1 % of total entries populate the unphysical low mass region
 - → blame mass fitter?
- does not affect analysis
 - → mass candidate is not propagated

Reconstruction of Ξ^- , $\overline{\Xi}^+$

- same reconstruction and selection criteria as for the Λ
- same critical issues
 - → rising profile of fit probability, unphysical masses after mass fit

- lacksquare ϵ = 33 %; purity = 82 %
- decay vertex resolution: 0.3 mm in x, y; 1.3 mm in z
- momentum resolution: 1.30 %
- invariant mass resolution, after vertex fit: 3.8 MeV/c²
- consistent results for Ξ⁻ and Ξ̄⁺

Reconstruction of $\Xi^-\overline{\Xi}^+\pi^+\pi^-$

- combine the prompt dipion system with the two cascades
- vertex fit RhoKinVtxFitter (cut 1 × 10⁻⁴)
- 4-constraint fit RhoKinFitter (cut 1 × 10⁻⁴)
- best cand. passed both probability cuts and has the smallest χ^2
- decay vertex resolution: 0.3 mm in x, y; 1.2 mm in z
- invariant mass distribution after 4C fit: 0.7 % of total entries populate unphysical high mass region (discarded)
- $\epsilon = 5\%$; purity = 87%

Reconstruction of $\Xi^-\overline{\Xi}^+\pi^+\pi^-$

- charged Ξ resonances $\rightarrow \Xi \pi \pi$
- Ξπ⁺π⁻ as two-body system: dipion system is pseudo-particle with variable invariant mass
- superposition of Dalitz plots: one for each $\pi^+\pi^-$ mass (use linear scale)

0.2 % of total entries outside boundaries

Summary of Reconstruction

Particle reconstruction stage	ϵ_{reco} [%]	purity [%]
$\pi^+\pi^-$ prompt system	65	96
Λ	54	81
$\overline{\Lambda}$	53	82
≘- =+	34	81
臣+	33	82
$\Xi^-\overline{\Xi}^+\pi^+\pi^-$	5	87

■ purity can be increased by tightening the prob. cut after 4C-fit e.g., 90 % purity with 5×10^{-1} prob. cut, but $\epsilon = 1$ %

Final Selection

	Reconstructed			Finally selected		
	$\sigma_p/p~[\%]$	$\sigma_M [{\rm MeV}/c^2]$	purity [%]	$\sigma_p/p~[\%]$	$\sigma_M [{\rm MeV}/c^2]$	purity [%]
Λ	1.42	2.0	81	1.33	2.4	96
$\overline{\Lambda}$	1.42	2.0	82	1.33	2.4	96
Ξ^-	1.30	3.8	81	0.83	3.6	93
Ξ^+	1.31	3.8	82	0.83	3.7	93

Background Studies

- 22 × 10⁶ DPM events
- zero events misidentified as signal → exclude 2.30 events at 90 % confidence level

- $N = \mathcal{L} \cdot \sigma_{sig} \cdot \epsilon_{sig} \cdot BR = 17639$ \rightarrow analyzed sample obtainable in approx. 10 days of data taking
- $\sigma_{sig} = 1 \, \mu b$ (estimate based on other strange particle decays)
- $\sigma_{bkq} = \sigma_{inel}^{tot} = 50 \, \mathrm{mb}$
- $\epsilon_{bkq} = 1.05 \times 10^{-5} \%$

- BR = 0.408 (corrects for $\Lambda \rightarrow \pi p \ 100 \%$)
- $\mathcal{L} = 1 \times 10^{31} \, \text{cm}^{-2} \, \text{s}^{-1}$ (PANDA 1st phase)

Summary and Outlook

- first steps towards feasibility study of $\overline{p}p \to \Xi^- \overline{\Xi}^+ \pi^+ \pi^-$
- uniform phase space distribution for the signal (no data available on this process)
- use of ideal tracking and PID algorithms
- backward reconstruction from final state stable particles up to pp
- $\epsilon = 5\%$, purity = 87%
- decay topology provides good intrinsic background suppression
- limited acceptance for all the 8 charged particles in the final state
- calculated rate indicates that good statistics can be collected in the 1st phase of PANDA
- cuts can be optimized to maximize significance and enhance S/B → more background evts needed
- kinematic fits available in PandaRoot present critical issues → use decay tree fitter
- more realistic studies (e.g., ph.sp. distr, realistic tracking and PID)

