## Update on the $\overline{p}p \to \overline{\Xi}\Xi$ Analysis

Walter Ikegami Andersson

Uppsala University on behalf of the  $\overline{P}ANDA$  collaboration

PANDA collaboration meeting November 05-09, 2018



#### Outline

- Feasibility studies of  $\overline{p}p \to \overline{\Xi}^+\Xi^-$  at  $p_{\rm beam}=7.0~{\rm GeV/c}$
- Spin observables extraction using spin density matrix formalism
- Will be presented on Thursday during plenary sessions

#### In this presentation

- Test effects on reconstruction efficiency when changing differential cross section
- Test feasibility of measuring spin observables of  $\overline{p}p \to \overline{\Xi}^+ \Xi^-$  at  $p_{\rm beam}=4.6~{\rm GeV/c}$

#### Simulation parameters

#### Simulations are done with:

- Release dec17p2b.
- fairsoft\_may16p1
- Fairroot v17.10b

#### Decay of $\Xi$ handled by Geant4:

- Ensures propagation of ≡ in B-field
- Event sample:  $\sim 8.5 \cdot 10^5$

#### Parameters:

Antiproton beam:

$$p_{\overline{p}} = 7.0 \text{ GeV/c}$$
  
 $p_{\overline{p}} = 4.6 \text{ GeV/c}$ 

- Full Detector Setup
- Ideal Mass Hypothesis for Kalman Filter
- Ideal Pattern Recognition
- Ideal Particle Identification

#### Preselection - first set

#### Preselection criteria:

- Combine  $p\pi^-$  to form  $\Lambda$  candidates
- Select  $|m_{\Lambda} M(p\pi^{-})| < 50 \text{ MeV/c}^2$
- Combine  $\Lambda \pi^-$  to form  $\Xi^-$  candidates
- Select  $|m_{\Xi} M(\Lambda \pi^-)| < 50 \text{ MeV/c}^2$
- DTF  $\Xi^- \to \Lambda \pi^- \to p \pi^- \pi^-$
- Repeat for  $\overline{\Xi}^+$  candidates
- Combine  $\overline{\Xi}^+\Xi^-$  to form  $\overline{p}p$  system



#### Preselection - second set

#### Final selection criteria:

- Vertex fit ∃<sup>+</sup>∃<sup>-</sup>
   To propagate variables from vertex to IP
- Select  $\angle(\overline{\Xi}^+\Xi^-) > 3$  rad
- Select  $\Delta z = z(\Lambda) z(\Xi) > 0$  cm
- Four constraint fit  $\Xi^+\Xi^-$
- Choose  $\overline{\Xi}^+\Xi^-$  pair with smallest 4C fit  $\chi^2$



## Preselection 1st set at $p_{\text{beam}} = 7.0 \text{ GeV/c}$

| Sample               | True                 | False                | T/F  | $\epsilon$ |
|----------------------|----------------------|----------------------|------|------------|
| $\overline{\Lambda}$ | $4.72 \times 10^{5}$ | $4.75 \times 10^{5}$ | 0.90 | 55%        |
| Λ                    | $4.84 \times 10^{5}$ | $5.39 \times 10^{5}$ | 0.99 | 57%        |
| Ξ+                   | $3.65 \times 10^{5}$ | $3.71 	imes 10^5$    | 0.98 | 43%        |
| Ξ-                   | $3.73 \times 10^{5}$ | $3.49 \times 10^{5}$ | 1.1  | 44%        |
| $\Xi^+\Xi^-$ 1st     | $8.9 \times 10^{4}$  | $1.2 	imes 10^4$     | 7.6  | 10.4%      |

- Efficiency of 10.4% after first set of preselection
- Must impose further selection and choose one candidate per event
- Consider background channels

## Final Selection - $\Xi$ Invariant Mass at $p_{\rm beam} = 7.0$ GeV/c

- Gaussian fit:  $m_{fit}(\overline{\Xi}^+) = 1322.1 \text{ MeV/c}^2$ and  $\sigma_{fit}(\overline{\Xi}^+) = 3.0 \text{ MeV/c}^2$
- Gaussian fit:  $m_{fit}(\Xi^-) = 1322.0 \text{ MeV/c}^2$ and  $\sigma_{fit}(\Xi^-) = 3.0 \text{ MeV/c}^2$

Select 
$$|m_{fit}(\Xi) - m_{pdg}(\Xi)| < 15 \,\mathrm{MeV/c}^2$$

$$\bullet \operatorname{Red} - \overline{\Sigma}^+(1385)$$

• Blue - 
$$\overline{\Lambda}\Lambda\pi^+\pi^-$$

• Green - 
$$\overline{p}p2\pi^+2\pi^-$$

• Cyan - Combi.





## Final Selection - Displaced Vertex at $p_{\rm beam} = 7.0 \; {\rm GeV/c}$

#### I.P reconstructed with vertex fit

- Ξ displaced from I.P
- Select  $(z(\overline{\Xi}^+) z(V_0)) + (z(\Xi^-) z(V_0)) > 3$

- Black \( \overline{\pi} \)<sup>+</sup> \( \overline{\pi} \)<sup>-</sup>
- Red  $\overline{\Sigma}^+$  (1385)
- Blue  $\overline{\Lambda}\Lambda\pi^+\pi^-$
- Green  $\overline{p}p2\pi^+2\pi^-$
- Cyan Combi.





#### Final Efficiencies

#### Limits are 90% C.L.

| Channel                      | <u>=</u> +=-         | $\overline{\Sigma}(1385)^+\Sigma(1385)^-$ | $\bar{\Lambda}\Lambda 2\pi^{+}2\pi^{-}$ | $\bar{p}_{p2\pi}^{+}2\pi^{-}$ | DPM                |
|------------------------------|----------------------|-------------------------------------------|-----------------------------------------|-------------------------------|--------------------|
| Sample                       | $8.5 \times 10^{5}$  | $10 \times 10^{7}$                        | $10 \times 10^{7}$                      | $10 \times 10^{7}$            | $10 \times 10^{7}$ |
| $\sigma_{\rm eff} \ [\mu b]$ | 0.123                | 4.33                                      | 24.1                                    | 390                           | 58 300             |
| Weight factor                | 1                    | 3.06                                      | 17.06                                   | 278                           | 41 214             |
| Preselection 2nd             | $7.83 \times 10^{4}$ | $3.15 \times 10^{4}$                      | $3.51 \times 10^{3}$                    | 1                             | 14                 |
| Final selection              | $6.76 \times 10^{4}$ | 3                                         | 14                                      | 0                             | 0                  |
| N weighted                   | $6.76 \times 10^{4}$ | 9                                         | 239                                     | 0                             | 0                  |
| S/B                          | 420                  | $7.4 \times 10^{3}$                       | 283                                     | > 106                         | > 0.7              |

- Final signal efficiency of  $\epsilon = 7.9\%$
- High purity, S/B > 100 across relevant background channels

#### Differential cross section

# Introduce forward-peaking distribution and see change in final efficiency

#### Forward peaking distributions

Angular distribution modeled with empirical function, t' reduced momentum transfer

$$I \propto abe^{-bt'} + cde^{-dt'}$$





More lenient case  $\epsilon = 7.5\%$ 

Extreme case, parameters similar to  $\overline{p}p \to \overline{\Sigma}^0 \Lambda$  at  $p_{\mathrm{beam}} = 6.0 \text{ GeV/c}$   $\epsilon = \mathbf{5.0\%}$ 

# Spin Observables at $p_{\text{beam}} = 4.6 \text{ GeV/c}$

Feasibility of measuring spin observables at  $p_{
m beam} = 4.6~{
m GeV/c}$ 

## Preselection 1st set at $p_{\text{beam}} = 4.6 \text{ GeV/c}$

| Sample               | True                 | False                | T/F  | $\epsilon$ |
|----------------------|----------------------|----------------------|------|------------|
| $\overline{\Lambda}$ | $5.14 \times 10^{5}$ | $5.43 \times 10^{5}$ | 0.95 | 60%        |
| Λ                    | $5.25 \times 10^{5}$ | $6.15 \times 10^{5}$ | 0.85 | 62%        |
| Ξ+                   | $3.87 \times 10^{5}$ | $4.07 \times 10^{5}$ | 0.95 | 46%        |
| Ξ-                   | $3.95 \times 10^{5}$ | $4.41 \times 10^{5}$ | 0.90 | 46%        |
| $\Xi^+\Xi^-$ 1st     | $9.7 \times 10^{4}$  | $8.9 \times 10^3$    | 11   | 11.4%      |

- Efficiency of 11.4% after first set of preselection
- Must impose further selection and choose one candidate per event
- Consider background channels

## Final Selection - $\Xi$ Invariant Mass at $p_{ m beam}=4.6$ GeV/c

- Gaussian fit:  $m_{fit}(\overline{\Xi}^+) = 1322.2 \text{ MeV/c}^2$ and  $\sigma_{fit}(\overline{\Xi}^+) = 2.8 \text{ MeV/c}^2$
- Gaussian fit:  $m_{fit}(\Xi^-) = 1322.2 \text{ MeV/c}^2$ and  $\sigma_{fit}(\Xi^-) = 2.8 \text{ MeV/c}^2$

Select 
$$|m_{fit}(\Xi) - m_{pdg}(\Xi)| < 15 \,\mathrm{MeV/c}^2$$

• Red - 
$$\overline{\Sigma}^+$$
 (1385)

• Blue - 
$$\overline{\Lambda}\Lambda\pi^+\pi^-$$

• Green - 
$$\overline{p}p2\pi^+2\pi^-$$

• Cyan - Combi.





# Final Selection - Displaced Vertex at $p_{\rm beam}=4.6~{ m GeV/c}$

#### I.P reconstructed with vertex fit

- Ξ displaced from I.P
- Select  $(z(\overline{\Xi}^+) z(V_0)) + (z(\Xi^-) z(V_0)) > 3$

- Black \(\overline{\pi}^+ \overline{\pi}^-\)
- Red  $\overline{\Sigma}^+$  (1385)
- Blue  $\overline{\Lambda}\Lambda\pi^+\pi^-$
- Green  $\overline{p}p2\pi^+2\pi^-$
- Cyan Combi.





# Final Efficiencies at $p_{\text{beam}} = 4.6 \text{ GeV/c}$

#### Limits are 90% C.L.

| Channel                                      | Ξ+Ξ-                 | $\overline{\Sigma}(1385)^+\Sigma(1385)^-$ | $\bar{\Lambda}\Lambda 2\pi^{+}2\pi^{-}$ | $\overline{p}p2\pi^{+}2\pi^{-}$ | DPM                |
|----------------------------------------------|----------------------|-------------------------------------------|-----------------------------------------|---------------------------------|--------------------|
| Sample                                       | $8.5 \times 10^{5}$  | $10 \times 10^{7}$                        | $10 \times 10^{7}$                      | $10 \times 10^{7}$              | $10 \times 10^{7}$ |
| $\sigma_{\mathrm{eff}} \left[ \mu b \right]$ | 0.41                 | 4.33                                      | 14.7                                    | 130                             | 68 800             |
| Weight factor                                | 1                    | 0.946                                     | 3.21                                    | 28.6                            | 15 087             |
| Preselection 2nd                             | $8.65 \times 10^{4}$ | $3.29 \times 10^{4}$                      | $2.61 \times 10^{4}$                    | 105                             | 5                  |
| Final selection                              | $7.23 \times 10^4$   | 1                                         | 39                                      | 0                               | 0                  |
| N weighted                                   | $7.23 \times 10^4$   | 0.9                                       | 125                                     | 0                               | 0                  |
| S/B                                          | 527                  | $7.63 \times 10^4$                        | 576                                     | $> 1.1 \times 10^3$             | > 2.1              |

- ullet Final signal efficiency of  $\epsilon=8.5\%$ , higher than  $p_{
  m beam}=4.6$  GeV/c case
- High purity, S/B > 500 across relevant background channels, purer than  $p_{\rm beam} = 4.6$  GeV/c case

# Polarisation $P_y$ at $p_{\text{beam}} = 4.6 \text{ GeV/c}$

- ullet Simulate sample of  $10^7$  signal events to construct acceptance correction matrices
- Acceptance correct and extract spin observables with method of moments





## Spin Correlation $C_{ii}$ at $p_{\text{beam}} = 4.6 \text{ GeV/c}$

- Simulate sample of 10<sup>7</sup> signal events to construct acceptance correction matrices
- Acceptance correct and extract spin observables with method of moments







## Spin Correlation $C_{ij}$ at $p_{\text{beam}} = 4.6 \text{ GeV/c}$

- ullet Simulate sample of  $10^7$  signal events to construct acceptance correction matrices
- Acceptance correct and extract spin observables with method of moments





## Summary & Outlook

- ullet Analysis at  $p_{
  m beam}=7.0$  GeV/c yields a signal efficiency of  $\epsilon=7.9\%$
- $\bullet$  Testing two forward peaking distributions yield  $\epsilon=7.5\%$  and  $\epsilon=5.0\%$
- Spin observables analysis also tested at  $p_{\rm beam} = 4.6 \; {\rm GeV/c}$ 
  - Signal efficiency of  $\epsilon = 8.5\%$
  - Spin observables can be extracted

## Summary & Outlook

- Analysis at  $p_{
  m beam}=7.0$  GeV/c yields a signal efficiency of  $\epsilon=7.9\%$
- $\bullet$  Testing two forward peaking distributions yield  $\epsilon=7.5\%$  and  $\epsilon=5.0\%$
- ullet Spin observables analysis also tested at  $p_{
  m beam}=4.6~{
  m GeV/c}$ 
  - Signal efficiency of  $\epsilon = 8.5\%$
  - Spin observables can be extracted

# Thank you for your attention!

## Backup

Acceptance used for  $C_{xx}$ 



Acceptance used for  $C_{yy}$ 



Acceptance used for  $C_{zz}$ 



Acceptance used for  $C_{xz}$ 



Acceptance used for  $C_{zx}$ 

