

DAQT-TDR Input, Subsystem Overview (EMC)

M. Kavatsyuk

KVI-CART, University of Groningen

for the PANDA collaboration

EMC-Readout Scheme

Components of the EMC readout:

- Intelligent front-end: digitizer
- Time-distribution system
- Data concentrators
- Burst-building network
- On-line computing

EMC Front-End Electronics

Intelligent front-end electronics

Feature Extraction:

- MWD filtering (programmable)
- Base-line follower
- Pulse detection
- Pile-up detection (output waveforms)
- Precise time
- Precise energy (amplitude, integral)
- Diagnostics: Possibility to readout raw ADC data (access to the noise-level measurement)
- Controlled readout of waveforms (required for automatic determination of thresholds)
- Self-monitoring for configuration errors, fast recovery procedure

Data Concentrator

Data concentrator:

- Running on TRB3 and Xilinx Kintex-7 development boards
- Receiving Waveforms and Hit-data over fiber from FEE
- Energy calibration for each ADC channel
- Burst building
- Put each Waveform in one Panda data-packet (debugging mode)
- Send Panda data-packets over fiber to CN UDP translator
- Slow Control with SODANET
- Combine hits from two digitizers corresponding to the same crystal
- Additional features: on-line histogram, data monitoring (hits and waveforms), error detection and counting

Data-Concentrator Unit

Hardware specifications:

- AMC board
- Kintex Ultrascale+ FPGA
- 60 optical links (12 Gbit/s)
- 16 high-speed serial links to backplane

EMC Data-Rates

Summary of the EMC readout.

	photo sensors	# of RU	hit-rate/RU	max data rate/RU
			hits/sec.	Gbps
Fw end-cap	768 VPTTs	24	$1.6 \cdot 10^{7}$	1.9
	6176 LAAPDs	193	$3.2 \cdot 10^{6}$	0.4
Barrel	$3040 \times 2 \text{ LAAPDs}$	117	$5.2 \cdot 10^{6}$	0.62
	$3840 \times 2 \text{ LAAPDs}$	73	$5.3 \cdot 10^{6}$	0.63
	$4480 \times 2 \text{ LAAPDs}$	85	$1.1 \cdot 10^{6}$	0.13
Bw end-cap	$524 \times 2 \text{ LAAPDs}$	10	$1.1 \cdot 10^{6}$	0.13

About 502 Readout Units (RU) (ADC or readout modules for hitdetection ASIC) will readout the target EMC

Readout Overview

Summary

- In order to complete DAQT TDR the readout topology for each subsystem should be known (so far defined for: EMC, STT and Luminosity)
- The DC hardware will be used as the SODANET source, hub and burst building network