

Motivation

Measurements

Results

Next Steps

Status of precalibration of VPTT submodules at Bonn

S. Gehring

Helmholtz-Institut für Strahlen- und Kernphysik der Universität Bonn

08.11.2018

Motivation

- Measurements
- Results
- Next Steps

Motivation

- Function test
- Precalibration
- Check energy range

Submodule of the Forward Endcap

Motivation Measurements Results Next Steps Alveole Light Yield Radiation Hardness

Matching provides us:

- Position of units in FEC
- Optimal HV for each compartment with 4 VPTTs
- Sected quality factor Q_i

Motivation

- Measurements
- Results
- Next Steps

Measurements with Cosmic Radiation

- Min. 72h measurement per submodule
- 4 identical Teststations (2 in 2 Chambers)
- Trigger modules with 16 channels
 - \rightarrow distinguish track types

Examples of Track Types

Motivation

Measurements

Results

Next Steps

Track Type 0

Track Type 7

Track Type 4

Examples of Track Types

Track Type 0 Track Type 7 Track Type 4 Measurements 30000F Next Steps particle energy [MeV 300 400 500 particle energy [MeV] particle energy [MeV]

Examples of Track Types

Motivation

Measurements

Results

- Rescaling measured spectrum
- Calculating log likelihood sum for each step

Motivation

Measurements

Results

- Rescaling measured spectrum
- Calculating log likelihood sum for each step

Motivation

Measurements

Results

- Rescaling measured spectrum
- Calculating log likelihood sum for each step

Motivation

Measurements

Results

- Rescaling measured spectrum
- Calculating log likelihood sum for each step

Combining Measurement and Simulation

Example Track Type 0

- Rescaling measured spectrum
- Calculating log likelihood sum for each step

Measurements

Combining Measurement and Simulation

- Rescaling measured spectrum
- Calculating log likelihood sum for each step
- Find best agreeing scaling factor at minimum LL sum

Combining All Track Types

LL sum in ch 5 for TT 6

400

300

min: 5.00 ± 0.15

7 Scaling Factor c

Combining All Track Types

 \rightarrow receiving scaling factor c_i from combined fit to all track

Amplitude Correction

Measurements

Results

Next Steps

- Recorded cosmic waveform
- Ped waveform into signal chain at different amplitudes

80 100 120 Fed Amplitude / mV

- Sorrelated measured QDC values to known amplitude
 - \rightarrow Transmission factor T_i

$$\Rightarrow$$
 correct gain: $E_i = c_i \cdot \frac{< T_i >}{T_i}$

miversitation Measurement of one Alveole with all Teststations

Comparison Scaling Factor to Quality Factor Example 2-X4Y2

Motivation

Measurements

Results

Comparison Scaling Factor to Quality Factor Example 1-X1Y4

Motivation

Measurements

Results

Comparison Scaling Factor to Quality Factor Example 1-X2Y4

Motivation

Measurements

Results

universitäthonn Deviation of all Scaling Factors to Quality Factors

Motivation

Measurements

Results

Next Steps

29 tested alveoles:

- Max deviation 30%
- \bullet Width of 8.5%

ersitation of all Scaling Factors to Quality Factors

universität**bonn**

Energy Range

Motivation

Measurements

Results

Next Steps

- PANDA Requirement: detect up to 12GeV
- Dynamic range: max. 2.2V
- VPTT bias range: 750V - 1000V

Adjusting energy range by VPTT bias voltage:

- Consider: HV identical for 4 VPTTs
- Tradeoff: energy range vs. resolution
- Result: 5 units cannot reach 12GeV

Next Steps

Motivation

Measurements

Results

Next Steps

Check energy range factors with $\overline{P}ANDA$ -SADC (\rightarrow Bachelor Theses)

Continue measurements:

- measure last 5 of 42 alveoles
- check one alveole with a dead channel
- measure 12 half alveoles

Thank you for you attention!

Quality Factor

 $Q_i = G_0 \cdot G(U, B) \cdot skb \cdot PG \cdot LY$

- G_0 : gain of VPTT at 1000V
- G(U,B): attenuation of VPTT gain due to reduced voltage and B-field
- *skb*: blue efficiency of VPTT
- PG: preamplifier gain
- LY: crystal light yield

Quality Factors from Matching

Simulated Spectra of all Track Types

Track Type 0 Track Type 1 Track Type 2 Track Type 3

Track Type 4

Track Type 5 Track Type 6

Track Type 7

12000 10000 8000 6000 particle energy [MeV] particle energy [MeV particle energy [MeV] particle energy [MeV

panda

Log Likelihood Methode

General likelihood that theory ${\boldsymbol y}$ describes measurement ${\boldsymbol n}$:

$$L_p(\mathbf{y},\mathbf{n}) = \prod_i \exp(-y_i) \frac{y_i^{n_i}}{n_i!}$$

Ratio for estimation of quality of fit (m ideal measurement):

$$\lambda = \frac{L_p(\mathbf{y}, \mathbf{n})}{L_p(\mathbf{m}, \mathbf{n})} \approx \frac{L_p(\mathbf{y}, \mathbf{n})}{L_p(\mathbf{n}, \mathbf{n})}$$

Transformation to general χ^2 :

$$\chi_L^2 = -2\,\ln(\lambda) = 2\sum_i \left(y_i - n_i + n_i\,\ln\left(\frac{n_i}{y_i}\right)\right)$$

ightarrow
ightarrow problem of minimising χ^2_L

Including B-field to Quality and Scaling Factors Example 1-X2Y4

No B-field

B-field included

Example 1-X1Y4

Example 1-X2Y4

preliminarily

ch in submodule

4 6 8 10 12 14

