

Status of APD Screening in Bochum

Panda Collaboration Meeting 18/3

Jan Reher

Ruhr-Universität Bochum

Readout of EMC crystals

- Readout of crystals for the forward endcap EMC:
 - 768 crystals in the endcap (very close to the beam pipe) are read out by VPTTs
 - Most crystals read out by two APDs each
- Full EMC is read out by ≈ 30 000 APDs
- 8 APDs are supplied by one power supply and need to be matched
- Properties vary between APDs
- Properties are dependant on temperature

- Values provided by manufacturer were measured at 20 °C
- \Rightarrow Screening and matching of all APDs for T = -25 °C is required!

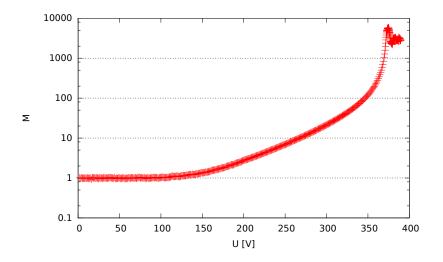
APD screening setup in Bochum

- Each screening board provides 16 slots to simultaneously screen 15 APDs and one reference APD
- APD signals read out by original Panda preamplifiers and SADC
- Bias voltage and current measurements provided by isea HV modules
- Illumination of APDs by DC light and by light pulser resembling the signal shapes of crystals
- Full setup with two boards located inside climate chamber
- → Capacity to simultaneously screen 30 APDs

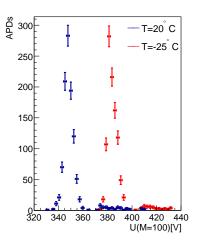
APD Screening Status

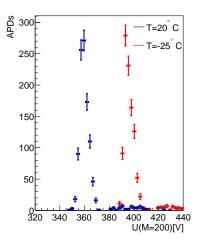
⇒ Extension of screening capacity by 30 APDs in second climate chamber in progress

APD screening setup in Bochum

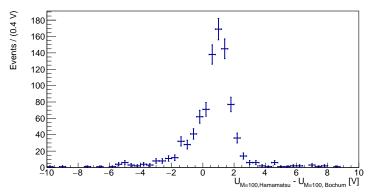

Measurement process

- Every APD is screened both at 20 °C and -25 °C
- Previous studies¹ showed: Measurement of dark currents and pulse shapes can be performed in parallel.
- → Four measurements in total: DC- and dark currents at in a warm and cold environment
 - Duration for a a full set of measurements \approx 10 h
 - At full capacity, screening 60 APDs per day is possible \rightarrow 300 APDs per week
 - With duplicated setup: 600 APDs per week.
- As of today, \approx 1000 new APDs and \approx 350 irradiated APDs were screened and evaluated at Bochum

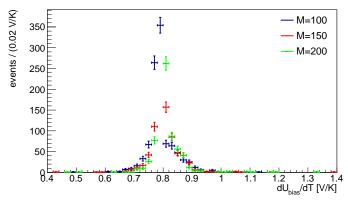



¹Leon Knarr, Bachelor's thesis

Exemplary gain curve

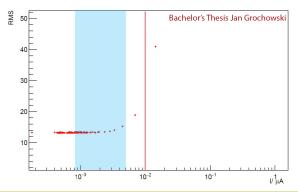


Bias voltages for M = 100 and M = 200 for forward endcap

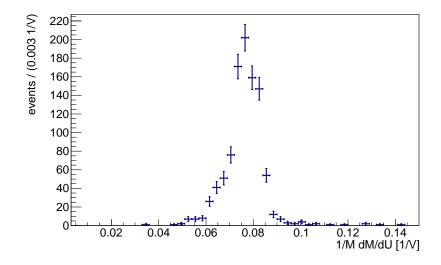

Comparison to values provided by Hamamatsu at M = 100

- Slight deviation from the manufacturers values is observed
- Deviations are well within parameters explained by temperature uncertainties ($\Delta T < 2 \,\mathrm{K}$)

Temperature dependency of bias voltages



■ Distribution of difference between bias voltages at $T=20^{\circ}\text{C}$ and $T=-25^{\circ}\text{C}$ is narrow \rightarrow Linear correlation between bias voltage and temperature



SADC noise measurements

- Noise measured at the SADCs depends on the dark current in the APD
- Maximum acceptable dark current can be estimated from the noise at the SADC
- Noise limit of $3 \cdot \sigma(M = 200) \Rightarrow I_{dark,max} = 10 \text{ nA}$

Slope at M = 200

Selection criteria for forward endcap

Maximum dark current at M = 800:

$$I_{dark}(M = 800) < 10 \, \text{nA}$$

- Matching criteria:
 - $ightharpoonup \Delta U_{bias}$ at M=200
 - $ightharpoonup \frac{dM}{dU}$ at M=200

Irradiation effects

- After the initial screening: Irradiation of APDs with 37 Gy
- Annealing for 48 hours at 80 °C.
- Short circuit of the APD pins during irradiation and annealing

- Second screening iteration after irradiation and annealing
- Continuous checks on the effects of irradiation, e.g. on bias voltages or temperature gradient

Summary and outlook

- APD screening in Bochum ongoing, current capacity of 300 APDs per week, soon to be doubled by second setup
- Results are in agreement with data from the manufacturer
- Selection criterium for APDs for the forward endcap:
 - $I_{Dark}(M = 800) < 10 \text{ nA}$
- Matching criteria:
 - $ightharpoonup \Delta U_{\text{bias}}$ at M=200
 - ightharpoonup at M=200
- Work on measurement process focussed on increasing output

