

Digital Signal Processing for the APFEL

FN

Oliver Noll

 $\bar{P}ANDA$ -Collaboration Meeting 18/3

November 2018

F

3 MAMI Beamtest with SADC

Digital Signal Processing

Properties

- Hit detection
- Time
- Energy (pulse height)

Requirements on Feature Extr.

- Fast (calculation time)
- Sensitive to ASIC pulse shape
- Linear
- Threshold as low as possible
- Dead time as short as possible

Digital Signal Processing

Filter

- Modification of transfer function
- Suppression of HF noise
- $\blacksquare \Rightarrow \mathsf{smoothing}$

Feature Extraction

- Determination of amplitude
- T₀ determination
- Pileup detection/correction

Filter (smoothing)

EMP

MIK(2

Idea

- Transfer function suppressed HF noise (low pass)
- Z transformation of impulse response

$$\quad H(z) = \sum_{n=0}^{N} h(n) \cdot z^{-n}$$

- h(n) : Filter Koeffizienten • $z = e^{i\omega T}$
- Each output value is weighted sum of most recent input values

•
$$out[n] = h_0in[n] + h_1in[n-1] + ... + h_Nin[n-N]$$

APFEL ASIC Feature Extraction

APFEL ASIC Feature Extraction

APFEL ASIC Feature Extraction

Oliver Nol

Benefits

- Reliable smoothing procedure (stable, no self-excitation)
- No pulse washout (pulse slope)
- Best way to increase signal/noise ratio

Drawback

FIR filtering eats FPGA recourses

Implementation

- Efficient synthesis with Digital Signal Processing slices (DSP)
- ~ 1 DSP slices per tap, 25 taps \cdot 32 channel 800 DSP slices
- 600 DSP slices on XC7K160T
- Need of resource saving implementation

FM

Implementation with Distributed Arithmetic

Idea: Using Look Up Tables (LUT) instate of multiplication slices

$$y = \sum_{k=0}^{K} h_k \cdot x_k$$
$$x_k = \sum_{n=0}^{N} b_{kn} 2^n$$

$$y = \sum_{n=0}^{N} \left[\sum_{k=0}^{K} h_k \cdot b_{kn} \right] 2^n$$

. . .

Precalculated and stored in Look Up Tables (LUT)

FIR with Distributed Arithmetic

VHDL Generator

- Software package which generates hardware description
- Free choose of parameters
 - Number of taps
 - Samplingrate
 - Pass-/stopband
 - Fix point resolution
 - ..

Hardware Simulation

- GHDL testbench
- Timing integrity

APFEL ASIC Feature Extraction

Time Measurement and Amplitude EXtraction (TMAX)

EΜ

Time Measurement and Amplitude EXtraction (TMAX)

TMAX Time Path

- T₀ at maximum
- Linear interpolation between samples
- Implementation with LUT

Derivative:

D[i] = T[i + r] - T[i]Time at change of sign: i_0 and i_1 Linear Interpolation $T_0 = i_0 + \frac{D[i_0]}{D[i_0] - D[i_1]}$

Time Measurement and Amplitude EXtraction (TMAX)

Is it worth all the effort?

- PANDA operates triggerless
- FIR improves time resolution: better time resolution → better energy resolution

PANDA SADC (P. Marciniewski): 64 channel

Bonn Firmware

Johannes Müllers HISKP, Bonn

- Firmware for Crystal Barrel
- GitLab repository
- Meetings in Bonn
- Helping hand

Mainz Firmware

- Using Bonn infrastructure
- Triggerless
- FIR filtering
- TMAX feature extraction
- New data package concept
- Full hardware simulation

MAMI Beamtest with SADC

MAMI Beamtest with SADC

Setup

- PROTO16-2 (4x4)
- SADC with Mainz firmware
- Triggerless
- Reference scintillator

Measuring Program

- Energies: 195,450,855 MeV
- Different APD gains
- Central shot in every crystal
 - Linearity
 - Energy resolution
- Rate scan (up to 400 kHz)
- FIR tap scan

Single Spectra Example

Crystal 6, Energy 450 MeV, Gain 300

Sum Spectra Example

Sum Spectra, Central Crystal 6

Linearity

MAMI Beamtest with SADC

EMP

Relative Energy Resolution

Single Spectrum, Central Crystal 6, Tap 05, Wehnelt U 12.90 [V], Sc. Rate 102.0 [kHz], Dt. Rate 105.7 [kHz]

Rate scan

With $\tau = 400$ ns and c = 5 kHz

- Development of APFEL feature extraction is finished
- Performance tested with hardware and software simulations
- First implementation into SADC
- Successful beamtest at MAMI

F٨

Backup

EMP

FIR with Distributed Arithmetic

MAMI Beamtest with SADC

FIR with Distributed Arithmetic

Counts

Single Spectrum, Central Crystal 6, Tap 05, Wehnelt U 12.90 [V], Sc. Rate 102.0 [kHz], Dt. Rate 105.7 [kHz]

10⁻¹

2000

4000

6000

8000

12000

10000 120 Filter Value [a.u.]

Single Spectrum, Central Crystal 6, Tap 05, Wehnelt U 12.55 [V], Sc. Rate 398.0 [kHz], Dt. Rate 341.2 [kHz]

EMP

Single Spectrum, Central Crystal 6, Tap 05, Wehnelt U 12.55 [V], Sc. Rate 398.0 [kHz], Dt. Rate 341.2 [kHz]