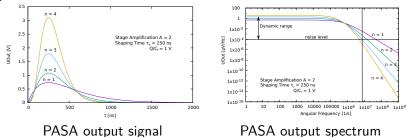


65Ť

Chip Design Activities Summary and Outlook Backup Full Chip Simulation

Outline


Simulation and Data Analysis

- Motivation
- Full Chip Simulation
- 3 Summary and Outlook

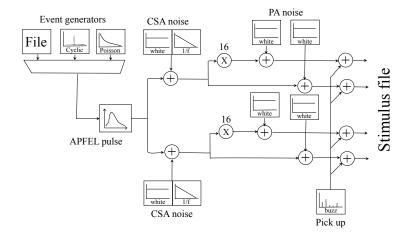
Motivation Full Chip Simulation

In May FEE workshop: Motivation of Analogue transients parameter:

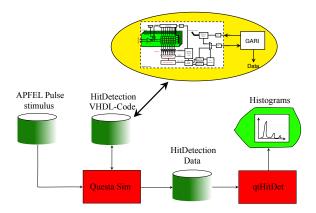
- 99.9 % of signal in the spectrum below 3.17 MHz
 - \Rightarrow Sampling frequency: 8 MS/s
 - \Rightarrow 8 samples to cover full pulse
 - \Rightarrow 16 sample traces

Are theses traces really sufficient for feature extraction?

Different algorithms for time and amplitude extraction have been tested


As the latest HitDetection prototype ASIC has a bug in digital readout simulated HitDetection data was used

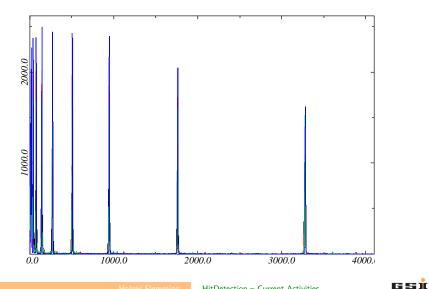
- Time
 - Zero crossing of derivation
- Amplitude
 - Maximum value
 - Integral
 - Window integral
 - Parabolic interpolation
 - Linear regression of transient and standardised pulse shape


Motivation Full Chip Simulation

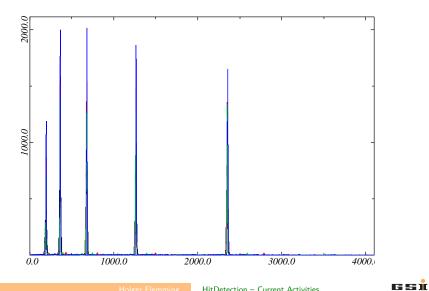
Stimulus generator

• Generating noisy APFEL pulses for Full Chip Simulation

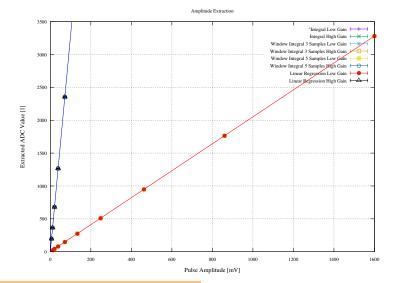
Chip Design Activities Summary and Outlook Backup Motivation Full Chip Simulation


- Feeding Stimulus data info QuestaSim simulation of HitDetection VHDL code
- HitDetection data output is written into file
- Data is analysed with described feature extraction algorithms

- Poisson distributed pulses, 50 kHz rate
- 10 discrete amplitudes 6 mV ... 1.6 V
- Logarithmic steps
- $\bullet~$ CSA white noise: 0.1 mV / 0.5 mV
- No CSA 1/f noise
- PA white noise: 2 mV / 5 mV
- $\bullet\,$ No Pick up / 20 mV 50 Hz + 5 mV 100 Hz


Chip Design Activities Summary and Outlook Backup Motivation Full Chip Simulation

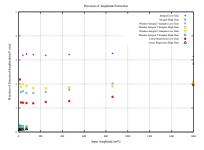
Low Gain Amplitude Spectrum


Chip Design Activities Summary and Outlook Backup Motivation Full Chip Simulation

High Gain Amplitude Spectrum

Chip Design Activities Summary and Outlook Backup Motivation Full Chip Simulation

Amplitude Extraction


Holger Flemming

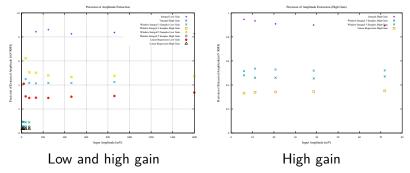
HitDetection - Current Activities

GSİ

Chip Design Activities Summary and Outlook Backup Motivation Full Chip Simulation

Precision of Amplitude Extraction

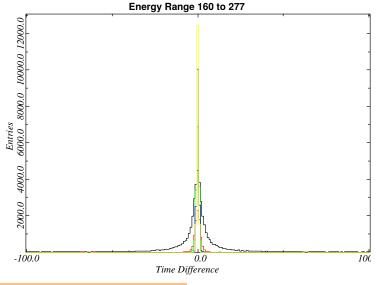
Low and high gain


Precision of Amplitude Extraction

High gain

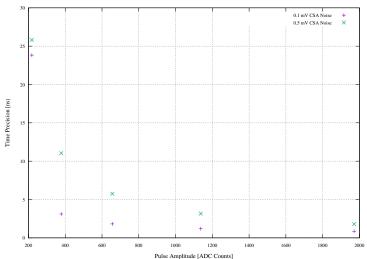
- CSA white noise: 0.1 mV
- No CSA 1/f noise
- PA white noise: 2 mV
- No Pick up

Chip Design Activities Summary and Outlook Backup Motivation Full Chip Simulation


Precision of Amplitude Extraction

- CSA white noise: 0.5 mV
- No CSA 1/f noise
- PA white noise: 5 mV
- \bullet Pick up: 20 mV 50 Hz + 5 mV 100 Hz

Chip Design Activities Summary and Outlook Backup Motivation Full Chip Simulation


Time Extraction

65Ť

Chip Design Activities Summary and Outlook Backup Motivation Full Chip Simulation

Precision of Time Extraction

Time Precision vs Signal Amplitude

olger Flemming

HitDetection - Current Activities

GSİ

Analogue Memory Input Buffer and Discriminator Floor Planning

Outline

2 Chip Design Activities

- Analogue Memory
- Input Buffer and Discriminator
- Floor Planning

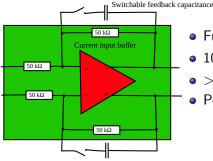
3 Summary and Outlook

G 5 1

Analogue Memory Input Buffer and Discriminator Floor Planning

Chip design activities towards a 16 channel prototype for barrel readout are ongoing

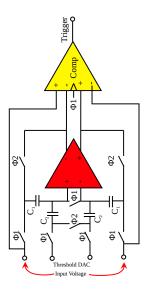
- Scaling analogue memory
- Input buffer and discriminator
- Floor planning


Analogue Memory Input Buffer and Discriminator Floor Planning

Analogue Memory Scaling

- Current analogue memory has four rows per channel with 8 columns
- Number of columns is increased to 16
- Schematic and layout design is finished
- Currently owing:
 - Simulation of parasitic extraction
 - Matching with read out integrators

Analogue Memory Input Buffer and Discriminator Floor Planning

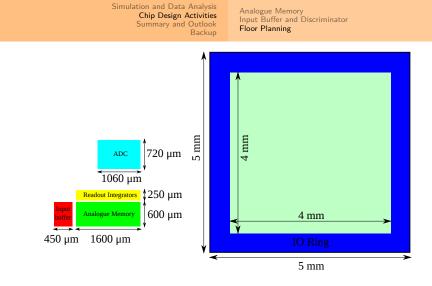


- Fully differential, gain 1
- 100 kΩ differential input resistor
- > 50 MHz bandwidth
- Possible modification:
 - Low pass characteristic by switchable feedback capacitances
 - Anti aliasing
 - Suppression of high frequency pick-up

r s u

- Noise reduction
- First simulations very promising

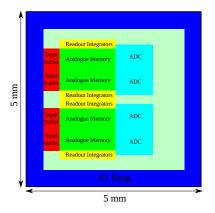
Analogue Memory Input Buffer and Discriminator Floor Planning


• Φ₁

- Storing input voltage in C_1
- Storing threshold Voltage in C_2

• Φ₂

- Switching C_1 into feedback
- Transferring charge from C_2 to C_1
- Output voltage:
 - $U_{in} C_2/C_1 U_{thres}$
- Used as comparator threshold
- Leading edge of Φ_1
 - Taking comparator decision
 $$\begin{split} & U_{in}(t) > U_{in}(t - \Delta t) - \frac{C_2}{C_1} U_{Thres} \\ & \Rightarrow \frac{\Delta U_{in}}{\Delta t} < \frac{C_2}{C_1} U_{Thres} \end{split}$$


r s u

- For MPW prototype runs the design has to fit into 5 by 5 mm² blocks
- approx. 15 kEuro / block

65T

Analogue Memory Input Buffer and Discriminator Floor Planning

- 9.58 mm² for full custom blocks will fit into 1 $5 \times 5 \text{ mm}^2$ block
- 6.42 mm² for power routing and digital logic Sufficient area??

65T

Outline

- 2 Chip Design Activities
- Summary and Outlook

Holger Flemming HitDetection – Current Activities

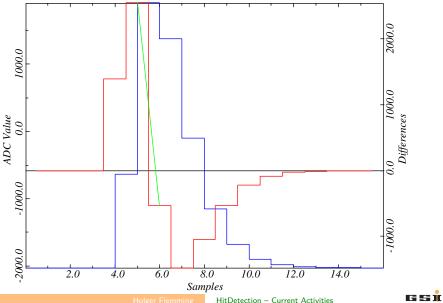
Summary and Outlook

- Different feature extraction algorithms have been tested with simulated HitDetection data
- Time as well as amplitude extraction works very well
- Extraction quality depends on numerical effort
- High quality feature extraction from 16 sample traces is feasable!
- Analyses have to be checked with measured data. Corrected HitDetection prototype is expected this month.
- Design work towards a 16 channel prototype for barrel readout is ongoing

Thank you for your attention

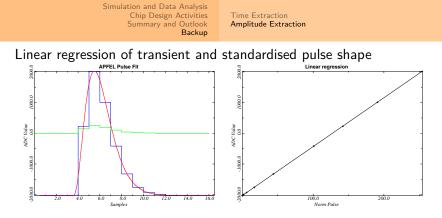
Holger Flemming HitDetection – Current Activities

Time Extraction Amplitude Extraction


Backup

Holger Flemming HitDetection – Current Activities

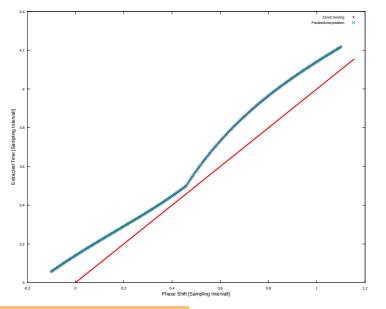
Time Extraction Amplitude Extraction



Amplitude Extraction Summary and Outlook Backup Integral Extraction 8000.0 10000.0 12000.0 2000.0 1000.0 ADC Value 0.0 6000.0 Integral 4000.0 -1000.0 2000.0 -2000.0 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 Samples GSİ

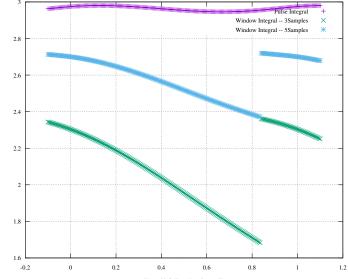
Time Extraction

Simulation and Data Analysis Chip Design Activities


HitDetection - Current Activities

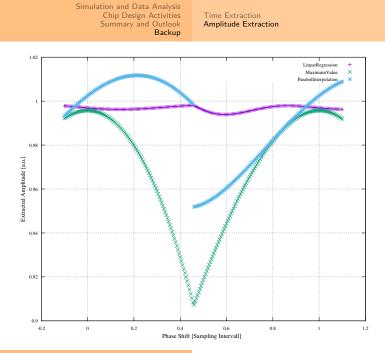
- Based on extracted time a standardised APFEL pulse is generated (green)
- For each sample: Standard APFEL pulse value and transient ADC value
- Linear regression (right side) \Rightarrow baseline, amplitude
- \Rightarrow reconstructed APFEL pulse (red)

Time Extraction Amplitude Extraction


Holger Flemming

HitDetection - Current Activities

GSĬ


Extracted Amplitude [a.u.]

Time Extraction Amplitude Extraction

Phase Shift [Sampling Intervall]

GSİ

Holger Flemming

HitDetection - Current Activities

GSI