

kvi - center for advanced radiation technology

ADC Radiation Mitigation: Fast Reboot

M. Kavatsyuk, V. Rodin, P. Schakel

KVI-CART, University of Groningen

for the PANDA collaboration

Push-Only Readout

university of groningen kvi - center for advanced radiation technology

Push-Only Readout

In case FPGA configuration is damaged and cannot be automatically recovered (single-bit errors), compete ADC module has to reboot:

- ADC is power cycled or dedicated "reboot" signal is sent via backplane;
- once booted ADC automatically fetches all required configuration from the data concentrator and start to produce valid data.

university of groningen kvi - center for advanced radiation technology

ADC Power Cycle

Power supply

Main Clock, FPGA 1

Main Clock, FPGA 2

The boot time from 'power switched on' to 'clock available' is about 180ms.

Functionality Recovery

Once FPGA clock is available register values and DAQ status are fetched from the data concentrator – ADC starts to produce data

Additional ~15 ms are required before ADC starts to produce data

FPGA "Reboot"

Power supply

Main Clock, FPGA 1

Main Clock, FPGA 2

The reboot sequence requires about 150ms.

Summary

The fast recovery (reboot/reset) sequence is tested:

• ADC recovers from radiation damage (FPGA configuration) within 200 ms

Thank you for your attention!