

FACULTY OF MECHANICA ENGINEERING UNIVERSITY OF WEST BOHEMIA

Simulation of cooling system for PANDA electromagnetic calorimeter using CFD

PANDA Collaboration Meeting Darmstadt, November 2018

> Ing. Michal VOLF volfm@kke.zcu.cz +420 608 282 562

Department of Power System Engineering - CFD

Introduction

How can this be achieved?

- ? number of cooling tubes
- ? shape of cooling tubes
- ? mass flow rate of cooling medium
- ? inlet temperature of cooling medium

- limited space for cooling circuits
- crystals cannot be cooled down directly
- homogenous temperature field
- different pressure losses in each cooling circuit

First approach

Computational domain

- ccomputational domain has been divided to two parts: <u>base domain</u> (crystals etc.) and <u>cooling system</u>
 - simplifies the procedure of testing multiple cooling systems
 - ensures the base domain is not influenced by changes in computational mesh

Numerical simulation setup

Material properties

Component	Material	Specific heat capacity [J kg-1 K ⁻¹]	Thermal conductivity [W m ⁻¹ K ⁻¹]	Density [kg m ⁻³]	Other
Crystals	PbWO4	262	3.22	8280	Ref. temp. 30 °C
Crystal casings	Carbon fibres	1100	78.8	NaN	Ref. temp. 120 °C
Crystal connections	Duralum	920	147	2900	Ref. temp. 25 °C
APFEL asics	Aluminium	903	237	2702	Ref. temp. 25 °C
Electronic board holders	Duralum	920	147	2900	Ref. temp. 25 °C
Intermediate plates	Duralum	920	147	2900	Ref. temp. 25 °C
Supermodule plate	Duralum	920	147	2900	Ref. temp. 25 °C
Foam	HOCOTOL	880	154	2830	Ref. temp. 25 °C
Cooling tubes	Copper	385	401	8933	Ref. temp. 25 °C
Cooling medium	Water/methanol (40/60)	3151	0.341	930	Ref. temp. 25 °C Ref. pressure 1 atm
Ambient medium	Ideal gas	-	-	-	-

• Material properties are NOT defined for operating temperature

• General values are taken since we do not have specific material sheets available

needs to be reviewed

Material properties

• the connection was modeled since there was no direct connection in the default geometry

Preliminary results

Temperature field – surface of the domain (without foam)

Temperature field – surface of the crystals

Preliminary results – cooling system failures

• it is assumed that mass flow rate in the second circuits is only 5% of the mass flow rate in the first one

Conclusion

Goal:	cool down crystals to approx 25 °C ensure stability of temperature & homogenous temperature field				
Difficulties:	complex geometry with lots of connections between components that are simulated as ideal ones lack of free space for proper cooling system				
	1D simplification of supermodules				
	high accuracy of simulations				
	sensitivity to boundary conditions				
	difficulties with material properties at working temperature				
Follow-up research:	result comparison between various cooling system designs				
	propose cooling design modifications VALIDATION OF PARTIAL RESULTS				
	simulate cooling system failures				

FACULTY OF MECHANICAL ENGINEERING UNIVERSITY OF WEST BOHEMIA

Thank you

Ing. Michal VOLF +420 608 282 562 volfm@kke.zcu.cz