CRITICAL ANALYSIS OF TWO PHOTON EXCHANGE IN ELECTRON/POSITRON - PROTON ELASTIC SCATTERING

Egle Tomasi-Gustafsson *CEA, IRFU, Saclay, France* Vladimir V. Bytev *JINR, BLTP, Dubna, Russia*

Plan

Cea

EM proton form factors

A.J.R. Puckett et al, PRL (2010), PRC (2012), PRC (2017)

Two photon exchange

- 1γ - 2γ interference is of the order of α = $e^2/4p$ =1/137
- In the 70's it was shown [J. Gunion and L. Stodolsky, V. Franco, F.M. Lev, V.N. Boitsov, L. Kondratyuk and V.B. Kopeliovich, R. Blankenbecker...] that, at large momentum transfer, the sharp decrease of the FFs, if the if the momentum is shared between the two photons, may compensate α
- The calculation of the box amplitude requires the description of intermediate nucleon excitation and of their FFs at any Q^{2...}
- Different calculations give quantitatively different results -

The Rosenbluth separation

The polarization method (theory:1967)

SOVIET PHYSICS - DOKLADY

VOL. 13, NO. 6

DECEMBER, 1968

PHYSICS

POLARIZATION PHENOMENA IN ELECTRON SCATTERING BY PROTONS IN THE HIGH-ENERGY REGION

Academician A. I. Akhiezer* and M. P. Rekalo

Physicotechnical Institute, Academy of Sciences of the Ukrainian SSR Translated from Doklady Akademii Nauk SSSR, Vol. 180, No. 5, pp. 1081-1083, June, 1968 Original article submitted February 26,

$$s_{2} \frac{d\sigma}{d\Omega_{R}} = 4p_{2} \frac{(\mathbf{s} \cdot \mathbf{q})}{1 + \tau} \Gamma (\theta, \epsilon_{1}) \left[\tau G_{M} (G_{M} + G_{E}) - \frac{1}{4\epsilon_{1}} G_{M} (G_{E} - \tau G_{M}) \right],$$

The polarization induces a term in the cross section proportional to $G_E G_M$ **Polarized beam and target or polarized beam and recoil proton polarization**

Polarization Experiments

A.I. Akhiezer and M.P. Rekalo, 1967

Jlab-GEp collaboration

- "standard" dipole function for the nucleon magnetic FFs GMp and GMn
- 2) linear deviation from the dipole function for the electric proton FF GEp
- 3) QCD scaling not reached
- 3) Zero crossing of GEp?
- 4) contradiction between polarized and unpolarized measurements

A.J.R. Puckett et al, PRL (2010), PRC (2012), PRC (2017)

Model independent statements

A sizable 2γ contribution would invalidate the FFs extraction as well as all experimental results based on the Born approximation.

•One-photon exchange: •Two (real) EM form factors •Functions of one variable (t)

•Two-photon exchange: •Three (complex) amplitudes •Functions of two variables (s,t)

• Breaks the linearity of the Rosenbluth plot

• Induces:

- charge-odd observables (asymmetry in e[±] p cross section)
- P-odd polarizations (Py)
- The expansion parameter is (Z α), $\alpha = e^2/4\pi = 1/137$.
 - It is expected to increase
 - When Z increases
 - At small angles

electron/positron – proton elastic scattering

$$\frac{d\sigma^{e^{\pm h \to e^{\pm h}}}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \left[A(Q^2) + B(Q^2)\tan^2\frac{\theta}{2}\right]$$

Born approximation $\left|M^{\pm}\right|^2 = \left|\pm M_{1\gamma}\right|^2 = \left|M_{1\gamma}\right|^2$
2y exchange:
 $\left|M^{\pm}\right|^2 = \left|\pm M_{1\gamma} + M_{2\gamma}\right|^2 = \left|M_{1\gamma}\right|^2 \pm 2\operatorname{Re} M_{1\gamma}M_{2\gamma}^* + \left|M_{2\gamma}\right|^2$
Asymmetry $A = \frac{\sigma(e^+p) - \sigma(e^-p)}{\sigma(e^+p) + \sigma(e^-p)} = \frac{2\operatorname{Re} M_{1\gamma}M_{2\gamma}}{\sigma_{Born}}$

The effect is enhanced in the ratio $R = \frac{\sigma(e^+ p)}{\sigma(e^- p)} = \frac{1+A}{1-A} \cong \sigma_{Born}(1+4\operatorname{Re} M_{1\gamma}M_{2\gamma})$

Unpolarized cross section

-The cross section for
$$\overline{p} + p \rightarrow e^+ + e^-$$
 (1 γ -exchange):

$$\frac{d\sigma}{d(\cos\theta)} = \frac{\pi\alpha^2}{8m^2\sqrt{\tau-1}} \left[\tau |G_M|^2 (1 + \cos^2\theta) + |G_E|^2 \sin^2\theta\right]$$
 θ : angle between e^- and \overline{p} in cms.

Two Photon Exchange:

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{4q^2} \sqrt{\frac{\tau}{\tau - 1}} D,$$

- Odd function of θ :
- Does not contribute at θ =90°

$$D = (1 + \cos^2 \theta) (|G_M|^2 + 2ReG_M \Delta G_M^*) + \frac{1}{\tau} \sin^2 \theta (|G_E|^2 + 2ReG_E \Delta G_E^*) + 2\sqrt{\tau(\tau - 1)} \cos \theta \sin^2 \theta Re(\frac{1}{\tau}G_E - G_M)F_3^*.$$

M.P. Rekalo and E. T.-G., EPJA 22, 331 (2004) G.I. Gakh and E. T.-G., NPA761, 120 (2005)

Symmetry relations

• Properties of the TPE amplitudes with respect to the transformation: $\cos \theta = -\cos \theta$ i.e., $\theta \rightarrow \pi - \theta$

(equivalent to non-linearity in Rosenbluth fit)

$$\Delta G_{E,M}(q^2, -\cos\theta) = -\Delta G_{E,M}(q^2, \cos\theta),$$

$$F_3(q^2, -\cos\theta) = F_3(q^2, \cos\theta)$$

•Based on these properties one can remove or single out TPE contribution

G.I. Gakh and E. T.-G., NPA761, 120 (2005)

Symmetry relations (annihilation)

· Differential cross section at complementary angles:

The SUM cancels the 2γ contribution:

$$\frac{d\sigma_+}{d\Omega}(\theta) = \frac{d\sigma}{d\Omega}(\theta) + \frac{d\sigma}{d\Omega}(\pi - \theta) = 2\frac{d\sigma^{Born}}{d\Omega}(\theta)$$

The DIFFERENCE enhances the 2γ contribution:

Radiative return (ISR)

$$e^+ + e^- \rightarrow p + \overline{p} + \gamma$$

$$\frac{d\sigma(e^+e^- \to p\bar{p}\gamma)}{dm \, d\cos\theta} = \frac{2m}{s} W(s, x, \theta) \sigma(e^+e^- \to p\bar{p})(m), \quad x = \frac{2E_\gamma}{\sqrt{s}} = 1 - \frac{m^2}{s},$$
$$W(s, x, \theta) = \frac{\alpha}{\pi x} \left(\frac{2 - 2x + x^2}{\sin^2 \theta} - \frac{x^2}{2} \right), \quad \theta >> \frac{m_e}{\sqrt{s}}.$$

B. Aubert (BABAR Collaboration) Phys Rev. D73, 012005 (2006)

Radiative return (ISR)

Angular Asymmetry

Check of linearity of the Rosenbluth plot

Check of ε -independence of G_E/G_M

Word data on e⁻/e⁺ scattering

C-odd asymmetry in e⁻/e⁺ scattering

E.A. Kuraev, V.V. Bytev, S.Bakmaev and E.T-G, PRC 78, 015295 (2008).

$$A^{odd} = \frac{d\sigma^{e+p} - d\sigma^{e^-p}}{2d\sigma^B} = \frac{Soft \ photon \ emission}{2\gamma \ exchange} \frac{2\gamma \ exchange}{2q\sigma^B} = \frac{2\alpha}{\pi} \left[\ln \frac{1}{\rho} \ln \frac{(2\Delta E)^2}{ME} - \frac{5}{2} \ln^2 \rho + \ln x \ln \rho + \text{Li}_2 \left(1 - \frac{1}{\rho x}\right) - \text{Li}_2 \left(1 - \frac{\rho}{x}\right) \right]$$
$$\rho = \left(1 - \frac{Q^2}{s}\right)^{-1} = 1 + 2E/M \sin^2(\theta/2), \ x = \frac{\sqrt{1 + \tau} + \sqrt{\tau}}{\sqrt{1 + \tau} - \sqrt{\tau}},$$

CLAS, VEPP-3, OLYMPUS....

OLYMPUS @ DESY

- Measure ratio of e[±]-p₁ cross to 1% total error
- unpolarized 2 GeV e^{\pm} beams available at DORIS, DÉSY
- detector BLAST from MIT-Bates

Expected ~6% effect at $\mathcal{E}=0.4$, $Q^2=3.2 \text{ GeV}^2$ J. Guttmann, N. Kivel, M. Meziane, and M. Vanderhaeghen, EPJA 47, 77 (2011)

<u>VEPP-3</u> @ Novosibirsk

E=1 and 1.6 GeV

Dedicated ESEPP generator
 (A. Gramolin, V. Nikolenko,
 V. Fadin, R.E. Gerasimov...)

I.A. Rachek et al., PRL 114, 062005 (2015)

CLAS

V. Rimal, PRC95, 065201 (2017)

I.A. Rachek et al., PRL 114, 062005 (2015)

- Large asymmetry in the raw data
- Big effort on radiative calculations

OLYMPUS

B.S. Henderson et al., PRL 118, 092501 (2017)

All Data

Compatible with unity?

All Data

From Experiment to Theory

• C-odd asymmetry⁻

$$A^{odd} = \frac{d\sigma(e^+p \to e^+p) - d\sigma(e^-p \to e^-p)}{d\sigma(e^+p \to e^+p) + d\sigma(e^-p \to e^-p)} = \frac{\delta_{odd}}{1 + \delta_{even}} = \frac{R - 1}{R + 1}, \ R = \frac{1 + A_{odd}}{1 - A_{odd}}$$

Measured Ratio:

$$R^{meas} = \frac{d\sigma^{meas}(e^+p \to e^+p)}{d\sigma^{meas}(e^-p \to e^-p)} = \frac{1 + \delta_{even} - \delta_{2\gamma} - \delta_s}{1 + \delta_{even} + \delta_{2\gamma} + \delta_s}.$$

Published 'Hard contribution'

$$R_{2\gamma} \simeq \frac{1 - \delta_{2\gamma}}{1 + \delta_{2\gamma}},$$

To be compared with theory:

$$R_{2\gamma}^{K} = \frac{1 - A_{odd}^{K}(1 + \delta_{even}) + \delta_{M}}{1 + A_{odd}^{K}(1 + \delta_{even}) - \delta_{M}},$$

Radiative corrections

1st order radiative corrections usually applied to the data

Radiative corrections: VEPP

Radiative corrections (CLAS)

Radiative corrections (OLYMPUS)

Difference Exp-Theory

Difference Maximon-Tjon

Difference Mo-Tsai

Difference< 2%

 No evident increase with ε, Q²

Conclusion - Discussion

- •Experimental results DO NOT favor a large 2γ effect
- •Other explanations are likely
 - •Radiative corrections

07

- •Normalization, correlations in experimental data
- •Models should be developed in all Q2 range
- •Large effort in Space- and Time like regions is ongoing to measure form factors more precisely in a wider kinematical range

Radiative Corrections (e⁻p)

May change the slope of σ_R (and even the sign !!!)

RC to the cross section:
- large (may reach 40%)
- ε and Q² dependent
- calculated at first order

E. T.-G., G. Gakh, PRC 72, 015209 (2005)

Radiative Corrections (SF method)

Yu. Bystricky, E.A.Kuraev, E. T.-G, Phys. Rev. C 75, 015207 (2007)

PHYSICAL REVIEW C 93, 055201 (2016)

2.52.0 1.5 ${}^{a}_{D/8}$ 0.50.0 1.10 1.05 (0 D H)/W D 0.90.90 (b) 2.52.0 р Gg/Gw 0.5TTT 0.0 Q^2 (GeV²)

Reanalysis of Rosenbluth measurements of the proton form factors

A. V. Gramolin^{*} and D. M. Nikolenko Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia (Received 28 March 2016; published 10 May 2016)

Figure 3: Difference at $Q^2 = 5 GeV^2$.

Other issues in data

- Normalizations

- of different sets of data
- within a set of data

Normalization

Andivahis et al., PRD50, 5491 (1994)

Two spectrometers (8 and 1.6 GeV)

2 points at low ε

Fixed renormalization for the lowest ε point c=0.956 (acceptance correction)

Increases the slope!

 $\mathbf{G}_{\mathbf{E}} \approx \mathbf{G}_{\mathbf{D}}$

Direct extraction of the Ratio

cea

Different Data Sets

Electric contribution to ep cross section

Fitting the angular distributions

The form of the differential cross section:

$$\frac{d\sigma}{d(\cos\theta)} = \frac{\pi\alpha^2}{8m^2\sqrt{\tau-1}} \left[\tau |\mathbf{G}_M|^2 (1+\cos^2\theta) + |\mathbf{G}_E|^2 \sin^2\theta\right]$$

is equivalent to:

$$\frac{d\sigma}{d(\cos\theta)} = \frac{\sigma_0}{\sigma_0} \left[1 + \mathcal{A}\cos^2\theta\right]$$

Cross section at 90^o

Angular asymmetry

$$\sigma_0 = \frac{\alpha^2}{4q^2} \sqrt{\frac{\tau}{\tau - 1}} \left(|G_M|^2 + \frac{1}{\tau} |G_E|^2 \right)$$

$$\mathcal{A} = \frac{\tau |G_M|^2 - |G_E|^2}{\tau |G_M|^2 + |G_E|^2} = \frac{\tau - \mathcal{R}^2}{\tau + \mathcal{R}^2}.$$
$$\mathcal{R} = |G_E|/|G_M|$$

E. T-G. and M. P. Rekalo, Phys. Lett. B 504, 291 (2001)

Polarization Experiments

Check of linearity of the Rosenbluth plot

Simple parametrization:

$$\sigma^{red}(Q^2,\epsilon) = \epsilon G_E^2(Q^2) + \tau G_M^2(Q^2) + \alpha F(Q^2,\epsilon),$$

$$F(Q^2,\epsilon) \to \epsilon \sqrt{\frac{1+\epsilon}{1-\epsilon}} f^{(T)}(Q^2).$$

$$f^{(T,A)}(Q^2) = \frac{C}{[1+Q^2(\text{GeV})^2/0.71]^2[1+Q^2(\text{GeV})^2/m_{T,A}^2]^2},$$

$1\gamma 2\gamma$ interference is charge-odd!

$$\begin{split} F(Q^2, x) &= -F(Q^2, -x). \\ x &= [\sqrt{(1+\epsilon)/(1-\epsilon)}] \end{split} \qquad \frac{\sigma(e^-p) - \sigma(e^+p)}{\sigma(e^-p) + \sigma(e^+p)} = \frac{\alpha F(Q^2, \epsilon)}{\epsilon G_E^2(Q^2) + \tau G_M^2(Q^2)}. \end{split}$$

E. T.-G., G. Gakh, Phys. Rev. C72,015209 (2005)

