> Measurement Results of a Large Dynamic Range CSA - UMC 180 nm Process -

P. Wieczorek, H. Flemming and H. Deppe

GSI Helmholtzzentrum fuer Schwerionenforschung GmbH Experiment Electronics Department

06. November 2018

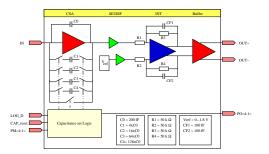
Outline

2 Mode of Operation

3 Measured Results

Overview Properties

Outline


Architecture and Properties

- Overview
- Properties

Overview Properties

- Charge sensitive amplifier input stage
- Switched feedback capacitances architecture
- Signal transformation: single-end to differential
- Analogue filter and buffer at the output

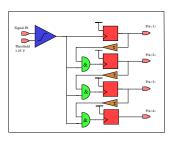
Overview Properties

- Large dynamic range of $> 10^5$
- Charge coverage: from noise level up to 45 pC
- Differential output voltage: 1V
- Active reset
- Automatic and manual mode to set feedback capacitances

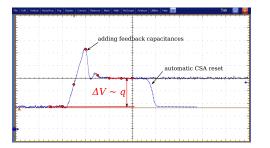
No.		Unit	Area	Unit
C ₀	200	fF	220	μm ²
C_1	$4 \times C_0$	fF	880	μm ²
C_2	$16 \times C_0$	fF	3523	μm ²
C ₃	$64 \times C_0$	fF	14080	µm ²
C₄	$128 \times C_0$	fF	28160	µm ²

Feedback Logic Dynamic Capacitance Extension

Outline


2 Mode of Operation

- Feedback Logic
- Dynamic Capacitance Extension
- 3 Measured Results


Feedback Logic Dynamic Capacitance Extension

- Manual mode: set fixed feedback capacitances to the amplifier
 - Known feedback cap. configuration
 - Chosen dynamic range is mapped on 1V
- Auto mode: dynamic extension of feedback capacitance
 - Each subrange is 1V
 - Additional readout of feedback configuration is necessary

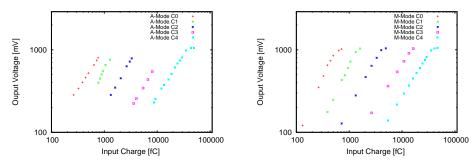
Feedback Logic Dynamic Capacitance Extension

- Measured transient during capacitance extension to the feedback is depicted
- Adding capacitance keeps the amplifier from saturation (up to 42pC)
- But: dynamic loss of 20%

Dynamic Range Gain Noise

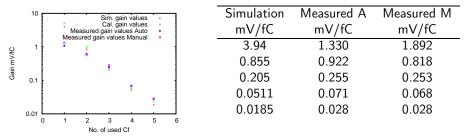
Outline

2 Mode of Operation


- Dynamic Range
- Gain
- Noise

Dynamic Range Gain

Noise

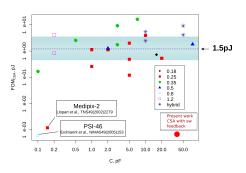

Measured with auto mode

Measured with manual mode

- Max. measured charge: up to 42pC
- Different slope for cap. C1 in auto mode

Dynamic Range Gain Noise

- Gain for C₀ capacitance is about 3x lower as expected ⇒ influence of the RC - parasitic effects
- Optimization in next version



Dynamic Range Gain **Noise**

- Summary of the noise calculation (compare: FEE Workshop 2018 at GSI)
 - $C_T = C_{gs} + C_{det} + C_f$ optimise parameter
 - C_T as small as possible \Rightarrow low noise contribution
 - C_{det} (detector capacitance): fixed
 - C_{gs} increases with the transistor geometry
 ⇒ trade off between transistor width and capacitance
 - Feedback capacitance C_f : \Rightarrow trade off between noise and dynamic range
- $C_{gs} = 20 \text{ pF}; C_{det} = 50 \text{ pF}; C_f = 1 \text{ pF} \dots 30 \text{ pF}$ $\Rightarrow C_T = 71...100 \text{ pF}$
- Measured CSA noise ($C_0 = 200 fF$) is $\sigma > 0.38 fC$

Dynamic Range Gain Noise

 Following O'Conner a figure of merit (FOM) defined as

$$FOM_{Preamp} = \frac{Power \times \tau_s}{Q_{max}/\sigma_Q}$$

- Short peaking time of $\tau_s = 20 \, \mathrm{ns}$
- Measured noise of $\sigma_Q = 0.4 \, {
 m fC}$
- Large dynamic range of >100 000
- Present design: FOM = 2fJ (excellent result)

Summary Outlook Noise Calc. Backup

Outline

2 Mode of Operation

- 3 Measured Results
- 4 Summary and Outlook
 - Summary
 - Outlook

Summary Outlook Noise Calc. Backup

- First Prototype works excellent
- Optimize in the next version:
 - Gain in the initial state (with cap. C0)
 - Noise: blocking of voltage references
 - Active filter in the feedback of the output stage
 - Resistance of the capacitance switches

Summary Outlook Noise Calc. Backup

- First customer is beam diagnostics for the readout of the SEM grids
- A 4 channel prototyp is submitted in summer 2018

Summary Outlook Noise Calc. Backup

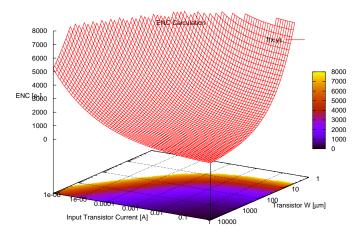
• Noise calculations for the input transistor as dominant noise source

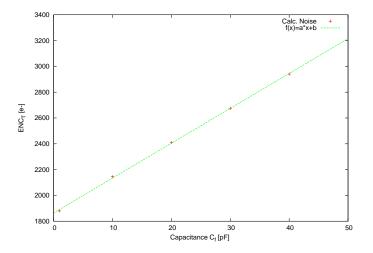
$$ENC_{th}^{2}[e^{2}] = \frac{10 \cdot k_{B} \cdot T}{8 \cdot q^{2}} \frac{C_{T}^{2}}{\tau_{s} \cdot \sqrt{(k_{x} \cdot W/L \cdot I_{ds})}}$$
(1)

$$ENC_{1/f}^{2}[e^{2}] = \frac{4 \cdot K_{f}}{C_{ox}^{2} \cdot q^{2}} \frac{C_{T}^{2}}{W \cdot L}$$
(2)

$$ENC_{DET}^{2}[e^{2}] = \frac{2}{q} \cdot I_{det} \cdot \tau_{s}$$
(3)

$$ENC_{tot}^2 = ENC_{th}^2 + ENC_{1/f}^2 + ENC_{DET}^2$$
(4)

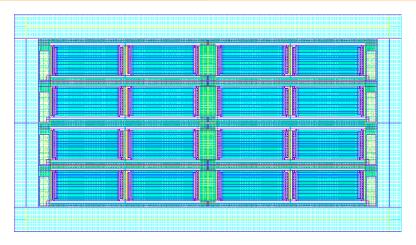

P. Wieczorek, H. Flemming and H. Deppe


Experiment Electronics

GSŤ

Summary Outlook Noise Calc. Backup

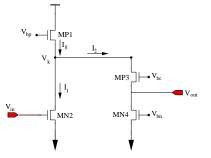
- Optimise transistor parameter W/L and I_{ds}
 - Input transistor ratio W/L high \Rightarrow large input capacitance
 - Current through input transistor large \Rightarrow high power consump.



• Small capacitance for small signals \Rightarrow better SNR

P. Wieczorek, H. Flemming and H. Deppe

Summary Outlook Noise Calc. Backup


- Layout input transistor with W/L: 35556 (256 \times 25/0.18)
- \bullet Input transistor area on chip: 330 μm \times 95 μm

P. Wieczorek, H. Flemming and H. Deppe

Summary Outlook Noise Calc. Backup

• CSA based on folded cascode architecture

-

No.	Current (TT ; SS ; FF)	Unit
I_g	3.1 ; 2.6 ; 3.81	mΑ
I_1	2.6 ; 2.2 ; 3.25	mΑ
I_2	0.5;0.4;0.55	mΑ

	MN2	MP1	MP3	MN4	Unit
Number	256	20	10	8	1
W	25	15	60	2.5	μm
L	0.18	1	0.5	1.5	μm
$I_{ds}(TT)$	2.6	3.1	0.5	0.5	mΑ

P. Wieczorek, H. Flemming and H. Deppe

