


## Updates on Mechanics of the FWE EMC PANDA Collaboration Meeting 18/3, GSI, November 6, 2018

#### **Thomas Held**

Ruhr-Universität Bochum Institut für Experimentalphysik I

#### Outline

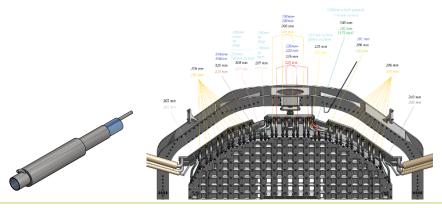



- Passivation of Coolant Pipings
- Coolant Flow Simulation
- Inner Stiffener Ring
- Preparation of Submodule Mounting in Jülich








- (Forward endcap) calorimeter coolant fluid: Water-methanol mixture (40:60)
- Coolant piping material: Stainless steel
- Corresponding welding line regions susceptible to corrosion in water/methanol
- Experimental verification by Claudius Schnier





- Remedy: Chemical or thermal passivation
- Thermal passivation at 1050 °C may cause deformation
- Chemical passivation:

Bath of hydrofluoric and nitric acid mixture

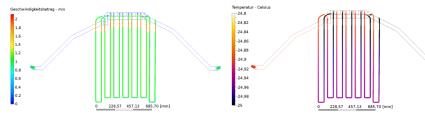




- Swagelok threads silver coated, need to be protected!
- Corresponding screws to close the nuts (Swagelok proprietary VCR thread)
- Leak check inspection holes in nuts need to be closed (M3 threads cut, closed by screws)



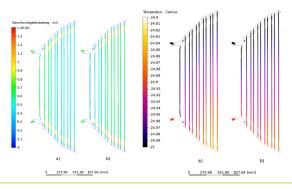



- All coolant pipings now prepared to go to passivation (KSO Edelstahlbeizerei GmbH, Wilnsdorf)
- As soon as we get the passivated pipes back we can run coolant flow tests according to simulation (C. Schnier)
- Last task to be done in Bochum before backplate and frame will be shipped to Jülich





#### **Coolant Flow Simulation**


 Simulation of coolant flow through backplate and resulting temperature profile at maximum electronics power dissipation (Claudius Schnier)



- Circuit on top/below beam pipe hole: Equal piping drill lengths, no individual flow adjustment necessary
- In-/outlet temperature difference less than 0.1 K, flow of 52 l/min, pressure drop 366 mbar

#### **Cooling Flow Simulation**

- Circuit backplate side regions: Calibrated holes in copper disks sealing coolant hose joints to backplane piping drills
- a) no flow adjustment b) adjustment by hole diameter
- In-/outlet temperature difference 0.1 K, flow of 40 l/min, pressure drop 120 mbar







### **Inner Stiffener Ring**

- "Inner Stiffener Ring" completed: Inner closing of cold volume (beam surrounding)
- 0.8 mm aluminum sheets folded (2 identical parts)





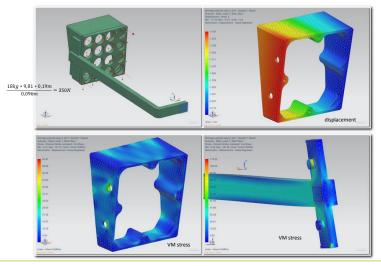
#### Preparation of Submodule Mounting in Jülich

 All 54 VPTT submodules built and currently stored in Bonn, will go to Jülich in one batch when tests are finished





#### Preparation of Submodule Mounting in Jülich


- Forward endcap support frame and pedestal fixed in place in Cosy TOF hall
- Manipulator arm (CMS): Repair ongoing, submodule adapter design (J. Colienne, FZJ)





## Preparation of Submodule Mounting in Jülich Mounting subunits

Stress & displacement in interface when subunit (18kg) is carried by manipulator





# Preparation of Submodule Mounting in Jülich Mounting subunits

Mounting tool to hold the subunits when mounting







