
Status of the Detector Control Systems for the Luminosity Detector

PANDA Collaboration Meeting 18/3

Florian Feldbauer

Ruhr-Universität Bochum - Experimentalphysik I AG

Current Setup in our Lab

- IOCs running on Single Board Computer (SBC)
- Structure in our lab similar to final PANDA scheme

High Voltage Power Supply

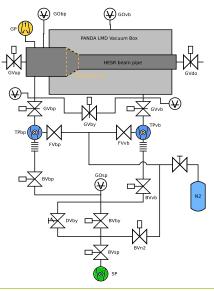
HV-MAPS need "high voltage" power supply ($\sim 60 \text{ V}$) Using ISEG EHS F4 05n-F:

- Controlled via CAN bus
- –500 V; 10 mA per channel
- 16 channels (single channel floating GND)
- Current resolution: 50 pA
- Ripple 5 mV_{P-P}
- Supplying five sensors with one HV channel

Using same EPICS IOC and OPIs as EMC group

Low Voltage Power Supply

We need:


- 1.8 V for HV-MAPS
- 3.3 V for electronics (LVDS repeater, Multiplexers)
- Using Wiener PL506 with MEH-02/07 modules
 - 6 channels, 0 7 V, 115 A/550 W
 - Remote control via Ethernet (SNMP)
 - Channels can be grouped to increase current output

Using same EPICS IOC and OPIs as EMC group

Vacuum System


- Thin transition foil
- \Rightarrow Vacuum in Box required
- Differential pumping to avoid large pressure differences
- Equipment
 - Edwards nXDS15i
 - Pfeiffer HiPace300 with TCP350 controller
 - Pfeiffer MPT200, PPT200
 - Valves from Pfeiffer and VAT
- Requirements
 - Beam pipe: 1 · 10⁻⁹ mbar
 - Vacuum box: 1 · 10⁻⁶ mbar

Vacuum System

Vacuum system attached to prototype

F. Feldbauer

Control of Vacuum System

Current status

- Pumps and Gauges read out via RS485 bus EPICS device support: asyn and stream^a
- Electro-pneumatic valves controlled via GPIOs from SBC EPICS device support: *devgpio^b*

^ahttps://github.com/epics-modules ^bhttps://github.com/ffeldbauer/epics-devgpio

But: Controlling valves/pumps via multi-purpose OS is dangerous

- Software might fail
- Processor might be blocked by other processes
- Valves might be opened/closed by other processes

Control of Vacuum System

Control vacuum system via "Equipment Protection System" (EPS) \Rightarrow Siemens SIMATIC ET200SP PLC

Connection to EPICS via PROFINET (WIP)¹

¹Maybe http://epics.web.psi.ch/software/s7plc/

Cooling

Hubert Unistate 425W

- Cooling power @-20 °C : 1.9 W
- Max pumping speed: 1051min⁻¹
- Max pumping pressure: 2.5 bar (custom version)
- Remote control via telnet-like TCP/IP and RS-232
- EPICS Device Support *asyn* and *stream*

Temperature regulated on internal bath temperature $(-25 \,^{\circ}\text{C})$

Temperature Monitoring

Temperature monitoring via THMP

- Modular readout system (s. talk by Tobias, "EMC DCS Status")
- Using PT100 on holding structures
- HV-MAPS have build-in NTC thermistors
- ⇒ Modification of temperature piggyback board necessary
- Using same EPICS IOC and OPIs as EMC group

Summary

What is ready:

- Power Supplies: HV, LV
- Vacuum System: Pumps, Gauges, Valves
- Cooling: Chiller, Temperature Sensors (THMP, PT100)

What is missing:

- PLC for vacuum system (programming)
- Linear Shift Mechanism: (Motor control, distance sensors)
- Modification of THMP Temp-PBB for NTC thermistor read-out
- MuPix configuration

