Nuclear systems with strangeness. From hypernuclei to kaonic nuclei

J. Mareš

Nuclear Physics Institute, Rez/Prague

Nordic Winter Meeting on Physics @ FAIR Björkliden, 26 March, 2010

Hypernuclei

• Hypernuclei = nuclear systems containing nucleons + 1 or more hyperons. (M.Danysz, J. Pniewski, Bull. Pol. Acad.Sci. 1 (1953) 42.)

BARYONS							
	Non-	Strange	Hyperons				
Particle	N	Δ	Λ	Σ	Ξ	Ω	
Mass	940	1232	1116	1190	1315	1672	
Spin	1/2	3/2	1/2	1/2	1/2	1/2	
Isospin	1/2	3/2	0	1	1/2	0	
Strangeness	0	0	-1	-1	-2	-3	
Quarks	uud	uuu	uds	uus	uss	SSS	
	udd	uud		uds	dss		
		udd		dds			
Section Review		ddd					

Particle	Lifetime	Width	Decay
р	$> 10^{31}$ years	≈ 0	—
n	896 s	$7.2 \times 10^{-19} eV$	-
Δ	$5.5 \times 10^{-24} s$	120 MeV	πN
Λ	$2.6 imes 10^{-10} s$	2.5 μeV	πN
Σ^{\pm}	$0.8 imes 10^{-10} s$	8.2 μeV	πN
Σ^0	$7.\dot{4} \times 10^{-20} s$	8.9 KeV	$\gamma\Lambda$
Ξ	$1.6 imes 10^{-10} s$	4.1 μeV	$k\Lambda$
Ω	$0.8 imes10^{-10}s$	8.2 <i>µ</i> eV	$k\Lambda,\pi\Xi$

Why to study hypernuclei?

- Test models of baryon-baryon and meson-baryon interactions (meson exchange models, quark models, chiral models, ...)
- Test nuclear models (RMF,EDF,RPA ...)
- Test models of hadrons (SU(3)symmetry, quark models ...)
- Hypernuclear production test reaction mechanisms
- Hypernuclear decays \rightarrow study of weak interaction

Implications for astrophysics (compact stars), HI collisions (strangeness production, medium modification od hadrons)

> 30 Λ-hypernuclei:

World of matter made of u, d and s quarks

> 30 Λ-hypernuclei:

Chart of Λ Hypernuclei

Updated from: O. Hashimoto and H. Tamura, Prog. Part. Nucl. Phys. 57 (2006) 564.

• (K^-, π^-) reaction (emulsions, CERN, BNL, KEK, Frascati, JParc):

$$\begin{split} & a = a' = (p_{3/2}^{-1}, p_{3/2}^{\Lambda})_{J=0^+} \qquad B_{\Lambda}(a) = 0 \text{ MeV}, \ B_{\Lambda}(a') = -3.5 \text{ MeV} \\ & b = b' = (p_{3/2}^{-1}, s_{1/2}^{\Lambda})_{J=1^-} \qquad B_{\Lambda}(b) = 11 \text{ MeV}, \ B_{\Lambda}(b') = 7 \text{ MeV} \\ & c = (p_{1/2}^{-1}, p_{1/2}^{\Lambda})_{J=0^+} \qquad B_{\Lambda}(c) = 2.5 \text{ MeV} \\ & d = (p_{1/2}^{-1}, s_{1/2}^{\Lambda})_{J=1^-} \qquad B_{\Lambda}(d) = 13 \text{ MeV} \\ & B_{\Lambda}(b') - B_{\Lambda}(d) = 6 \text{ MeV} \text{ (n SO splitting)}, \ B_{\Lambda}(a') - B_{\Lambda}(c) = 6 \text{ MeV} \text{ (n + } \Lambda \text{ SO splitting)} \\ & \Rightarrow \Delta(p_{1/2}^{\Lambda} - p_{3/2}^{\Lambda}) \leq 0.3 \text{ MeV} \end{split}$$

• (π^+, K^+) reaction (BNL, KEK):

Hotchi et al, PRC 64 (2001) 044302

- Textbook example of single-particle structure
- $\bullet~\Lambda$ hyperon bound by $\sim 28~MeV$ in nuclear matter
- Negligible spin-orbit splitting

• RMF calculations (J.M., B.K. Jennings, PRC (1994):

(+ quark model + $Y\omega$ tensor coupling $\frac{f_{\omega Y}}{2M_Y} \bar{\Psi}_Y \sigma^{\mu\nu} \partial_{\nu} V_{\mu} \Psi_Y$)

P. Finelli et al. / Nuclear Physics A 831 (2009) 163-183

Table 2

Binding energies (in MeV) of single- Λ levels in ${}^{13}_{AC}$, ${}^{16}_{AO}$, ${}^{40}_{AC}$ and ${}^{89}_{AV}$. Experimental energies [1] are shown in comparison with the results of the present calculations, using the input parameters of Table 1 and $\zeta = 0.5$ (column FKVW). Also listed are results of five different models: Quark Meson Coupling (QMC) [12,13], Fermi Hypernetted Chain (FHNC) [18], Skyrme (SK) [16], Brueckner–Hartree–Fock (BHF) [19] with the Njimegen SC97F potential [50], and RMF models with a tensor coupling [11] (RMFI with $f_{Q}^{A}/g_{Q}^{A} = -1$) and density-dependent couplings [14] (RMFI).

Nucleus	€s.p.	Expt.	FKVW	QMC	FHNC	SK	BHF	RMFI	RMFII
$^{13}_{\Lambda}C$	$1s_{1/2}$	11.38 ± 0.05	12.3	-	8.3	11.7	13.7	12.5	11.7
	$1p_{3/2}$	0.38 ± 0.1	0.1	-	-	0.9	1.4	1.1	1.1
	$1p_{1/2}$		0.0					0.8	0.0
¹⁶ ₄ O	$1s_{1/2}$	12.42 ± 0.05	12.6	16.2	12.00	13.3	15.5	12.9	12.8
21	$1p_{3/2}$	1.85 ± 0.06	2.0	6.4	1.8	3.0	3.7	3.3	2.8
	$1p_{1/2}$		1.9	6.4				3.0	1.4
$^{40}_{\Lambda}$ Ca	151/2	20.0 ± 1.0	18.9	20.6	20.0	18.0	20.7	19.0	17.6
2.4	$1p_{3/2}$	12.0 ± 1.0	10.1	13.9	10.6	10.1	11.5	10.7	9.1
	$1p_{1/2}$		10.1	13.9				10.5	7.8
	$1d_{5/2}$	1.0 ± 1.0	1.6	5.5	1.6	1.6	2.0	2.7	1.5
	$1d_{3/2}$		0.9	5.5				2.4	1.5
⁸⁹ Y	$1s_{1/2}$	23.1 ± 0.5	23.4	24.0	23.3	21.1	24.1	23.7	23.2
21	$1p_{3/2}$	16.5 ± 4.1	17.2	19.4	16.9	15.6	17.8	17.6	17.2
	$1p_{1/2}$		17.2	19.4				17.4	16.3
	$1d_{5/2}$	9.1 ± 1.3	10.2	13.4	10.1	9.1	10.4	10.7	10.3
	$1d_{3/2}$		9.8	13.4				10.5	8.9
	$1f_{7/2}$	2.3 ± 1.2	2.8	6.5	-	2.1	2.4	3.7	3.1
	$1 f_{5/2}$		2.0	6.4				8.4	1.0

177

Table 4

P-shell spin–orbit splittings $\Delta \equiv \Delta \epsilon^A(p)$ for six hypernuclei $\binom{13}{A}C$, $\binom{16}{A}O$, $\binom{40}{A}Ca$, $\binom{89}{A}Y$, $\binom{13}{2}La$, $\binom{20}{A}Pb$). Experimental values [44], or empirical estimates [1,47,48], are shown in comparison with our theoretical predictions (FKVW), using a broad range of ζ parameters (see Eq. (12)), and other relativistic calculations with (RMFI [11]) or without (RMFII [14]) tensor coupling. All energies are given in keV. The asterisk means that a local fit has <u>been ne</u>cessary.

Nucleus	Exp. ⊿ [keV]	FKVW $(0.4 \leq \zeta \leq 0.66)$	RMFI [11]	RMFII [14]
¹³ _A C	$152 \pm 54 \pm 36$ [44]	$-160 \leqslant \varDelta \leqslant 510$	310	$\sim 1100^{*}$
¹⁶ _Λ O	$\begin{array}{l} 300 \leqslant \varDelta \leqslant 600 \; [47] \\ -800 \leqslant \varDelta \leqslant 200 \; [1] \end{array}$	$-210 \leqslant \Delta \leqslant 490$	270	~ 1400
$^{40}_{\Lambda}$ Ca		$-140 \leqslant \varDelta \leqslant 420$	210	~ 1400
$^{89}_{\Lambda}$ Y	90 [48]	$-40 \leqslant \varDelta \leqslant 180$	110	~ 700
¹³⁹ La	19 _ 문제로 감독했다. * 19 _ 문제로 19 10 - 19 10 - 19	$-20 \leqslant \varDelta \leqslant 80$	50	~ 300
²⁰⁸ _A Pb		$-20 \leqslant \varDelta \leqslant 70$	50	~ 300

(K⁻_{stop}, π⁻) reaction
 (FINUDA, PLB 622 (2005) 35):

A binding energy spectrum in $^{12}_{\Lambda}C$

• (e, e'K) reaction (JLab, PRL 99 (2007) 052501):

 $^{12}_{\Lambda}B$ excitation spectrum

• γ spectroscopy (BNL, KEK)

 \Rightarrow spin dependence of the effective ΛN interaction in the nuclear p shell

Level schemes of A hypernuclei from recent γ -ray measurements H. Tamura, Nucl. Phys. A 804 (2008) 73; 827 (2009) 153c [PANIC08]

$$\begin{split} V_{\Lambda N} &= V_0(r) + V_\sigma(r) \; s_N \cdot s_\Lambda + V_{LS}(r) \; l_{N\Lambda} \cdot (s_\Lambda + s_N) + V_{ALS}(r) \; l_{N\Lambda} \cdot (s_\Lambda - s_N) + V_T(r) \; S_{12} \\ \text{D.J. Millener, Nucl. Phys. A 804 (2008) 84} \end{split}$$

s-shell Λ hypernuclei

Nemura et al, PRL 89 (2002) 142504 (including $\Lambda N \rightarrow \Sigma N$ and $\Lambda \Lambda \rightarrow \Xi N$ mixings) variational approach

Hiyama et al, PRC 65 (2002) 011301(R) - Jacobi-coordinate Gaussian basis Nogga et al, PRL 88 (2002) 172501 - Faddeev + Faddeev-Yakubovsky

$\Lambda\Lambda$ hypernuclei

 $B_{\Lambda\Lambda}(^{A}_{\Lambda\Lambda}Z) = B_{\Lambda}(^{A}_{\Lambda\Lambda}Z) + B_{\Lambda}(^{A-1}_{\Lambda}Z)$ $\Delta B_{\Lambda\Lambda}(^{A}_{\Lambda\Lambda}Z) = B_{\Lambda}(^{A}_{\Lambda\Lambda}Z) - B_{\Lambda}(^{A-1}_{\Lambda}Z)$

 $^{6}_{\Lambda\Lambda}$ He (Prowse 66), $^{10}_{\Lambda\Lambda}$ Be (Danysz 63), $^{13}_{\Lambda\Lambda}$ B (KEK-E176 91) $\rightarrow \Delta B_{\Lambda\Lambda} \sim 4.3 - 4.8$ MeV

Takahashi et al, PRL 87 (2001) 212502 $\Delta B_{\Lambda\Lambda}(^{6}_{\Lambda\Lambda}\text{He}) = B_{\Lambda\Lambda}(^{6}_{\Lambda\Lambda}\text{He}) - 2B_{\Lambda}(^{5}_{\Lambda}\text{He}) \approx 1 \text{ MeV}$

$\Lambda\Lambda$ hypernuclei

Hiyama, Kamimura, Motoba, Yamada, Yamamoto, NPA 754 (2005) 103c, 3- and 4-body cluster model calculations

Need to measure beyond ${}^6_{\Lambda\Lambda}$ He \rightarrow PANDA

$\Lambda\Lambda$ hypernuclei

J. Pochodzalla

- Ξ^- conversion in 2 Λ : $\Xi^- + p \rightarrow \Lambda + \Lambda + 28.5$ MeV
- $p(K^-, K^+) \equiv^-$ KEK - E176: 10² stopped \equiv per week KEK - E373: 10³ stopped \equiv per week AGS - E885: 10⁴ stopped \equiv per week
- $p + \bar{p} \rightarrow \Xi^- + \bar{\Xi}^+$ antiproton storage ring HESR: few times 10⁵ stopped Ξ per day ! $\Rightarrow \gamma$ -spectroscopy feasible

Σ hypernuclei

• Σ-nucleus interaction:

(J.M., Friedman, Gal, Jennings, NPA 594 (1995) 311,

E. Friedman, A. Gal, Phys. Rept. 452 (2007) 89)

• Σ hyperons are not bound in nuclei except for $\frac{4}{\Sigma}$ He

Sawafta et al, PRL 83 (1999) 25; Noumi et al, PRL 89 (2002) 072301

Σ hypernuclei

• DWIA calculations (Harada & Hirabayashi, NPA 759 (2005) 143)

 $^{28}{\rm Si}(\pi^-,K^+)$ spectrum from KEK-E438, using 6 Σ -nucleus potentials, (a)-(c) with inner repulsion, (d)-(f) fully attractive

- Ξ-nucleus interaction:
- no established yet QBS
- $^{12}\mathrm{C}(\mathcal{K}^-,\mathcal{K}^+)$ spectra (KEK -E224, BNL-E885) \rightarrow V_{Ξ} \approx 14 MeV
- Calculations of light Ξ hypernuclei (Hiyama et al, PRC 78 (2008) 054316).
- Spectroscopic study of \equiv hypernucleus $\frac{1^2}{\equiv}B$... (T. Nagae), A 'Day-1' experiment E05 at J-Parc

Multi-strange baryonic systems

J. Schaffner, C.B. Dover, A. Gal, C. Greiner, H. Stöcker, PRL 71 (1993) 1328. $\equiv N \rightarrow \Lambda\Lambda ~(\approx 25 \text{ MeV in free space})$ is Pauli blocked

Strange hadronic matter

neutron star structure

• kaon condensation could occur at $\rho \gtrsim 3\rho_0$, $I^- \rightarrow K^- + \nu_l \; (\omega_{K^-} \leq 200 \; {\rm MeV})$

Kaonic nuclei

• $\bar{K}N$ interaction

strongly attractive $\Leftarrow \exists \Lambda(1405) 27$ MeV below K^-p threshold

• \bar{K} -nucleus interaction

strongly attractive and absorptive \Leftarrow kaonic atom level shifts and widths

? optical potential depth:

 $\operatorname{Re}V_{opt} \simeq (150-200) \text{ MeV} \leftarrow \text{phenomenological models}$ $\operatorname{Re}V_{opt} \simeq (50-60) \text{ MeV} \leftarrow \text{chiral models}$

$\Rightarrow \exists \text{ of } \bar{K}\text{-nuclear states}$

? sufficiently narrow to allow identification by experiment

Kaonic nuclei

T. Yamazaki, Y. Akaishi / Physics Letters B 535 (2002) 70-76

Status Quo

• K^- capture in Li and ¹²C (FINUDA, PRL (2005)): $B = 115 \pm 6 \pm 4$ MeV, $\Gamma = 67 \pm 14 \pm 3$ MeV

vs.

• $K^- pN \rightarrow \Lambda N + FSI$ (Magas et al., PRC (2006))

vs.

• K^- stopped in ⁶Li \rightarrow K^- ppn cluster, $B = 58 \pm 6$ MeV, $\Gamma \simeq 30$ MeV (FINUDA, PLB (2007) vs. Magas et al., arXiv:0801.4504)

?

• \bar{p} annihilation on ⁴He (Obelix, LEAR) $\rightarrow K^- pp : B \simeq 160$ MeV, $\Gamma \simeq 24$ MeV $\rightarrow K^- ppn: B = 121 \pm 15$ MeV, $\Gamma < 60$ MeV

(Bendiscioli et al., NPA (2007))

 pp → K⁺Λp (DISTO) → K⁻pp: B = 105±118 MeV (T. Yamazaki et al. EXA08, arXiv: 0810.5182 [nucl-ex])

?

K⁻pp quasibound state

- Coupled-channel calculations of a $\overline{K}NN \pi \Sigma N$ system (Shevchenko, Gal, JM, PRL 98 (2007) 082301.)
- 3-body Faddeev equations (in AGS form):

 $\begin{array}{l} U_{11} = & + \ T_2 \ G_0 \ U_{21} + \ T_3 \ G_0 \ U_{31} \\ U_{21} = \ G_0^{-1} + \ T_1 \ G_0 \ U_{11} + \ T_3 \ G_0 \ U_{31} \\ U_{31} = \ G_0^{-1} + \ T_1 \ G_0 \ U_{11} + \ T_2 \ G_0 \ U_{21}, \end{array}$

 U_{ij} describe elastic and re-arrangement processes:

 $\begin{array}{l} U_{11}: \ 1+(23) \rightarrow 1+(23) \\ U_{21}: \ 1+(23) \rightarrow 2+(31) \\ U_{31}: \ 1+(23) \rightarrow 3+(12) \end{array}$

• $\bar{K}N$ strongly coupled with $\pi\Sigma$ via $\Lambda(1405) \Rightarrow \pi\Sigma$ channel included

particle channels α :	$1:(\bar{K}NN)$	2 : (πΣN)	3 : (πNΣ)
i = 1	NN	ΣΝ	ΣΝ
i = 2	ĒΝ	πN	$\pi\Sigma$
i = 3	ĒΝ	$\pi\Sigma$	πN

Table: Calculated K^-pp binding energies and widths (in MeV)

	single channel		coupled channel			
	AY	DHW	SGM	IS	WG	
В	48	17-23	50-70	60 - 95	40-80	
Г	61	40-70	90-110	45-80	40-85	

RMF Methodology

• Larger K⁻-nuclear systems

Relativistic mean field model for a system of **nucleons** , *K* mesons, and hyperons interacting through the exchange of σ , σ^* , ω , ρ , ϕ and photon fields:

$$\mathcal{L} = \mathcal{L}_{RMF} + \mathcal{L}_{K} + \mathcal{L}_{Y}$$

where

$$\begin{split} \mathscr{L}_{RMF} &= \text{standard relativistic mean field lagrangian density} \\ \mathscr{L}_{K} &= (\mathcal{D}_{\mu}K)^{\dagger} \left(\mathcal{D}^{\mu}K \right) - m_{K}^{2}K^{\dagger}K - g_{\sigma K}m_{K}\sigma K^{\dagger}K - g_{\sigma^{*}K}m_{K}\sigma^{*} K^{\dagger}K , \\ \mathscr{L}_{Y} &= \bar{\psi}_{Y}[i\mathcal{D} - (m_{Y} - g_{\sigma Y}\sigma - g_{\sigma^{*}Y}\sigma^{*})]\psi_{Y} , \end{split}$$

with covariant derivative:

$$\mathcal{D}_{\mu} = \partial_{\mu} + \mathrm{i} \, g_{\omega K} \, \omega_{\mu} + \mathrm{i} \, g_{\rho K} \, \vec{I} \cdot \vec{\rho}_{\mu} + \mathrm{i} \, g_{\phi K} \, \phi_{\mu} + \mathrm{i} \, e \, (I_3 + \frac{1}{2} \, Y) A_{\mu} \, .$$

RMF Methodology

+ antikaons:

$$(-\nabla^2 - E_{K^-}^2 + m_K^2 + \Pi_{K^-})K^- = 0$$

$$\operatorname{Re} \Pi_{K^{-}} = - g_{\sigma^{*}K} m_{K} \sigma^{*} - g_{\sigma K} m_{K} \sigma - 2 E_{K^{-}} (g_{\omega K} \omega + g_{\rho K} \rho + g_{\phi K} \phi + e A)$$
$$- (g_{\omega K} \omega + g_{\rho K} \rho + g_{\phi K} \phi + e A)^{2}$$

$$\begin{split} \mathrm{Im}\,\Pi_{K^-} &= (0.7\,f_{1\Sigma} + 0.1\,f_{1\Lambda})\,\mathcal{W}_0\,\rho_N(r) + 0.2\,f_{2\Sigma}\,\mathcal{W}_0\,\rho_N^2(r)/\tilde{\rho_0}\\ f_{iY} & \text{kinematical suppression factors}\\ (\text{ reduced phase space})\\ \mathcal{W}_0 & \text{constrained by kaonic atom data} \end{split}$$

Absorption through:

• pionic conversion modes $\propto \rho_N(r)$

 $\bar{K}N
ightarrow \pi\Sigma + 90$ MeV, $\pi\Lambda + 170$ MeV (70%, 10%)

• nonmesonic modes $\propto \rho_N^2(r)$ $\bar{K}NN \rightarrow YN+240 \text{ MeV (20%)}$

 Γ_{K-} width \Leftarrow phase space suppression x density enhancement

Single- K^- nuclei

• Γ_{K^-} follows the dependence sf(B_{K^-})

The K^- decay widths Γ_{K^-} in $\frac{12}{K^-}$ C, $\frac{16}{K^-}$ O, $\frac{40}{K^-}$ Ca, and $\frac{208}{K^-}$ Pb as function of the K^- binding energy B_{K^-} . The dashed line indicates a static nuclear matter calculation.

Multi- \bar{K} nuclei

The \bar{K} binding energies as functions of the number κ of antikaons.

- saturation observed across the periodic table
- $B_{\bar{K}} << m_K + m_N m_\Lambda \gtrsim 320$ MeV, far away from kaon condensation

Multi- \bar{K} nuclei

The K^- binding energy as a function of the number κ of antikaons.

- saturation occurs for any boson-field composition (when ω -field present \Rightarrow repulsion)
- no saturation of B_K for a purely scalar interaction

Nuclear (ρ_N) and \bar{K} ($\rho_{\bar{K}}$) density distributions for various numbers κ of antikaons.

Multi- \bar{K} hypernuclei

Fig. 17 The \bar{K} binding energy $B_{\bar{K}}$ in ²⁰⁸Pb as a function of the number κ of antikaons and η of Λ hyperons.

Multi- \bar{K} hypernuclei

The \bar{K} binding energy $B_{\bar{K}}$ in ${}^{A}Z + \eta \Lambda + \mu_{0}\Xi^{0} + \mu_{-}\Xi^{-} + \kappa K$ as a function of the number κ of antikaons.

- Λ hyperon bound by 28 MeV in nuclear matter, spin-orbit splitting → 0 Few-body Λ (and ΛΛ) hypernuclei - ΣN → ΛN important *p*-shell hypernuclei - effective ΛN interaction determined (exp. JLab, FINUDA, planned JParc, HypHI @ GSI (FAIR))
- more data on $\Lambda\Lambda$ hypernuclei needed \rightarrow PANDA
- Σ hyperons are not bound in nuclei except for $\frac{4}{\Sigma}$ He
- <u>∃</u> hyperons perhaps bound by ≈ 14 MeV in nuclear matter (planned exp. JParc)
- *K* nuclei → the issue is far from being resolved (searches for K⁻pp are underway in GSI and JParc)
- kaon condensation is unlikely to occur in strong-interaction self-bound strange hadronic matter