# Reaction measurements on and with radioactive isotopes for nuclear astrophysics

# René Reifarth

GSI Darmstadt/University of Frankfurt

# *NORDIC WINTER MEETING ON PHYSICS @ FAIR* Björkliden, Sweden, March 22-26, 2010



- Charged-particle induced reactions
- Gamma-induced reactions
- Neutron-induced reactions

#### **Nucleosynthesis of the elements**



#### Astrophysics motivation: the p-process

- 35 stable neutron-deficient isotopes between <sup>74</sup>Se and <sup>196</sup>Hg
- Dominating reactions: (p,γ) for light nuclei;
  (γ,n), (γ,p), (γ,α) and β<sup>+</sup> decays for heavier nuclei
- Temperatures of 2-3×10<sup>9</sup> K during time scales of a few seconds are required (type II supernovae explosions)



## Typ II Supernovae (core collaps supernovae)

#### Left overs from SN form new stars and planets



#### crab nebula – SN 1054 (NASA)



#### SN 1987A (NASA)

- (p, $\gamma$ ), (a, $\gamma$ ) in the Gamow window
- for heavy elements during p-process: ~ several MeV



- Traditional method:
  - Produce target, irradiate with H, He beam
  - Detect products
    - Delayed (activation)
    - Prompt (gammas)

**p-,** α-beam (1-10 AMeV)



# Example: <sup>103</sup>Rh(p,γ) at FZK (KIT)

- pulsed proton beam from 3.7 MV Van de Graaff
- metallic rhodium target in center
- gamma detection with  $4\pi$  BaF<sub>2</sub> ball
  - high efficiency
  - background discrimination via
    - sum energy, multiplicity
    - time relative to proton pulse





#### M. Weigand et. al, DPG Spring Meeting 2010 (Bonn)

#### g-energy vs. time



### **2** MeV protons on <sup>103</sup>Rh



Gamow window: 1.7 – 4.3 MeV

#### **3 MeV protons on <sup>103</sup>Rh**

![](_page_10_Figure_1.jpeg)

- Method for radioactive beams:
  - Inverse kinematics
  - Gas target (H, He) since limited range of ions
  - Produce beam of radioactive ions
  - Storage ring
  - Detect prompt products
    - Gammas
    - Ions

#### **Reaction Studies at the ESR**

Measurements of  $(p,\gamma)$  or  $(\alpha,\gamma)$  rates in the Gamow window of the p-process in inverse kinematics.

#### Advantages:

- Applicable to radioactive nuclei
- Detection of ions via in-ring particle detectors (low background, high efficiency)
- Knowledge of line intensities of product nucleus not necessary
- Applicable to gases

![](_page_12_Figure_7.jpeg)

## Layout of the experimental facilities at GSI

![](_page_13_Figure_1.jpeg)

### **Reaction Studies at the ESR**

nozzle

ESR Gas-Jet-Target

3000 /s 10<sup>-2</sup> mbar

First pilot experiment performed with stable beams: <sup>96</sup>Ru(p,γ)<sup>97</sup>Rh

- Measurements performed at 9, 10, 11 AMeV
- 5-10<sup>6</sup> particles per spill
- Target density 1.1013 atoms/cm2
- Luminosity 2.5-10<sup>25</sup>
- Cross section 2 mbarn -> ~180 counts/h

![](_page_14_Figure_7.jpeg)

Q. Zhong et al., Journal of Physics: Conference Series, Volume 202, Issue 1, pp. 012011 (2010)

#### Simulations with LISE++

![](_page_15_Figure_1.jpeg)

Yield

#### **Reaction Studies at the ESR**

![](_page_16_Figure_1.jpeg)

![](_page_17_Figure_0.jpeg)

#### Normalization of the cross section

Detection of atomic electron pick-up in the gas target (<sup>96</sup>Ru<sup>44+</sup>+e<sup>-</sup> -> <sup>96</sup>Ru<sup>43+</sup>): x-position Particle detectors counts **Detection of** 10 <sup>96</sup>Ru<sup>43+</sup> in MW Injection detector 10 10<sup>2</sup> 10 Septur -50 100 150 x-position [channels] Gas jet Mean K- AL PHA RMS 800 **Detection of** 700 x-rays at the 600 target 500 400 K- REC 300 **К- ВЕТА** 200 **ESR** K- GAMMA 100

René Reifarth (GSI / U. Frankfurt)

30

40

50

60

20

0<sup>L</sup>

10

#### Preliminary result @ 11 MeV – upper limit

![](_page_19_Figure_1.jpeg)

Ignore (p,n) component – resulting in an upper limit for (p,γ)

Non-smoker: 3.5 mb

#### Outlook

- Improvements of particle detection
  - higher position resolution
  - Z-resolution
  - inside vacuum
  - better coverage
- radioactive isotopes with FAIR
- Program to establish a grid of measured reaction rates for the p-process is possible
- (p,γ) in Gamow window planned for 2011
- $(\alpha, \gamma)$  proof of principle planned for 2011

# EXL - Exotic nuclei studied in Light-ion induced reactions at the NESR storage ring

![](_page_21_Figure_1.jpeg)

#### Gamma-induced

- Measurements close to particle threshold
  - (γ,n), (γ,p), (γ,a), [ (γ,f) ]
- Traditional method:
  - Produce target
  - Produce gamma-rays
    - Bremstrahlung, variable endpoint energy (S-DALINAC, ELBE)
    - Inverse compton, "mono-energetic" (HIγS)
  - Detect reaction products via activation technique

![](_page_22_Figure_9.jpeg)

#### **Photoactivation experiments**

#### High Intensity Photon Setup (HIPS) @ TUD

![](_page_23_Figure_2.jpeg)

J. Hasper, K. Sonnabend *et al.*, Phys. Rev. C 77 (2008) 015803 K. Sonnabend *et al.*, Phys. Rev. C 70 (2004) 035802

#### **Photoactivation experiments**

High Intensity  $\gamma$ -ray Source (HI $\gamma$ S) @ DFELL, TUNL

![](_page_24_Figure_2.jpeg)

- Method for radioactive beams:
  - Inverse kinematics
  - "virtual photon field" as result of relativistic interaction with high-Z target (lead)
  - Produce beam of radioactive ions
  - In-beam experiment
  - Detect ALL prompt products
    - Gammas
    - Ions

#### **Experimental method**

Astrophysically relevant energy window:  $E_{\gamma} \approx S_n$  + kT/2 = 8-12 MeV, width  $\sim$  1 MeV

#### Coulomb dissociation in inverse kinematics:

- Virtual photons produced by a high-Z target (Pb)
- Projectile at ~500 MeV/u
- Large impact parameter b
- E<sub>max</sub> of the virtual photon spectrum ~ 20 MeV
- C and empty target measurements (to subtract nuclear contribution and background)

![](_page_26_Figure_8.jpeg)

Important: results for the stable isotopes can be compared with measurements with real photons on ELBE (FZD) and S-DALINAC (TUD).

#### (γ,n) reaction on Mo isotopes - why?

![](_page_27_Figure_1.jpeg)

Isotopic abundance calculations:

- Large networks
- Most of the reaction rates from the statistical model

- <sup>92</sup>Mo has one of the highest cosmic abundances of all p-nuclei
- Ru and Mo isotopes are significantly underproduced in all existing network calculations
- Studied isotopes:
  - <sup>92</sup>Mo, <sup>94</sup>Mo, <sup>100</sup>Mo (stable) to verify the method;
  - $9^{3}$ **Mo** ( $t_{1/2} = 4^{*}10^{3}$  y) reaction rate not measured before

O. Ershowa et. al, DPG Spring Meeting 2010 (Bonn)

## Layout of the experimental facilities at GSI

![](_page_28_Figure_1.jpeg)

<sup>100</sup>Mo, <sup>94</sup>Mo: primary beams to Cave C (500 MeV/u);
 <sup>93</sup>Mo, <sup>92</sup>Mo: secondary beams (500 MeV/u) from <sup>94</sup>Mo (700 MeV/u).

#### LAND/ALADiN setup

![](_page_29_Figure_1.jpeg)

The LAND setup provides full kinematical measurements

TFW

| PSP1, 2, 3: | dE, x, y                  |
|-------------|---------------------------|
| POS:        | t                         |
| CS:         | dE, θ, φ (gammas)         |
| GFI1, 2, 3: | X                         |
| TFW:        | dE, t                     |
| LAND:       | dE, t, x, y, z (neutrons) |

#### **Incoming beam ID**

![](_page_30_Figure_1.jpeg)

#### **Outgoing beam ID: Z**

![](_page_31_Figure_1.jpeg)

#### **Outgoing beam ID: mass**

Fragment mass (with cuts on incoming <sup>100</sup>Mo, outgoing **Z=42** (Mo) and **neutron multiplicity in LAND =1**)

![](_page_32_Figure_2.jpeg)

| Studied<br>isotope      | <sup>100</sup> Mo (primary) |             | <sup>92</sup> Mo (secondary) |             |
|-------------------------|-----------------------------|-------------|------------------------------|-------------|
|                         | Q value, keV                | N of events | Q value, keV                 | N of events |
| ( <b>ү,n)+ (</b> ү,nү') | -8290                       | 172200      | -12673                       | 10685       |
| (γ,2n) +<br>(γ,2nγ')    | -14200                      | 44907       | -22780                       | 1408        |
| Time of measurement     |                             | 14 h 40 m   |                              | 16 h 46 m   |
| incoming<br>ions        |                             | 3 045 090   |                              | 374 471     |

# R<sup>3</sup>B @ FAIR

![](_page_34_Figure_1.jpeg)

- <u>R</u>eactions with <u>R</u>elativistic <u>R</u>adioactive
- <u>B</u>eams
- Large-acceptance spectrometer for reaction studies in complete kinematics

# Super-FRS

# R<sup>3</sup>B setup

#### **R<sup>3</sup>B** - Reactions with Relativistic Radioactive Beams

![](_page_35_Figure_1.jpeg)

~100 - ~1000 AMeV

From: R<sup>3</sup>B Technical Report

**Combine CD with detailed balance** 

- Determination of (p,γ), (a,γ), (n,γ) via there time-inverse reactions
- Very short half-lives accessible (r, rp-process)
- 3-body reactions are accessible
  - $-^{15}O + p + p -> ^{17}Ne$  (rp-process)
  - Studied via  $^{17}Ne(\gamma,2p)^{15}O$

#### **Neutron-induced: the s-process**

![](_page_37_Figure_1.jpeg)

#### Red Giants – easy to spot

![](_page_38_Figure_1.jpeg)

#### **Red Giants become White Dwarfs**

![](_page_39_Picture_1.jpeg)

Ring nebula illuminated by the White Dwarf in the center.

## **Meteorites – hints from the sky**

Mondem donnerstein geraue im rcy. 1ar: Dor Enfischein.

![](_page_40_Picture_2.jpeg)

Meteorites contain presolar grains!

![](_page_40_Picture_4.jpeg)

![](_page_40_Figure_5.jpeg)

![](_page_40_Figure_6.jpeg)

#### s-process nucleosynthesis

#### Two components were identified and connected to stellar sites:

![](_page_41_Figure_2.jpeg)

#### **Neutron Capture on <sup>14</sup>C**

- Verification of Coulomb Dissociation (CD) as an indirect method for determining (n,γ) rates
- Big Bang Nucleosynthesis
- Neutron-induced CNO cycles s-process
- Neutrino-driven winds r-process

![](_page_42_Figure_5.jpeg)

#### **Activation Method**

<sup>14</sup>C(n,γ)<sup>15</sup>C reaction detected via <sup>15</sup>C(β<sup>-</sup>)<sup>15</sup>N decay ( $t_{1/2}$ =2.5 s) <sup>14</sup>C sample irradiated for 10 s, then activity counted for 10 s ("cyclic activation")

![](_page_43_Figure_3.jpeg)

R. Reifarth et. al, PRC C 77, 015804 (2008)

#### **Neutron spectra**

![](_page_44_Figure_1.jpeg)

# $^{15}C - \gamma$ -spectra

![](_page_45_Figure_1.jpeg)

#### **Description and Deconvolution**

![](_page_46_Figure_1.jpeg)

#### **Comparison with other rate estimates**

![](_page_47_Figure_1.jpeg)

#### **Comparison with CD**

![](_page_48_Figure_1.jpeg)

#### FRANZ

#### (Frankfurt Neutron source at the Stern-Gerlach-Zentrum)

![](_page_49_Figure_2.jpeg)

#### **Experimental program at FRANZ**

The Frankfurt neutron source will provide the highest neutron flux in the astrophysically relevant keV region (1 - 500 keV) worldwide.

Factor of 1000 higher than at FZK

#### **Neutron capture measurements of small cross sections:**

- Big Bang nucleosynthesis:  ${}^{1}H(n,\gamma)$
- Neutron poisons for the s-process:  ${}^{12}C(n,\gamma)$ ,  ${}^{16}O(n,\gamma)$ ,  ${}^{22}Ne(n,\gamma)$ .
- ToF measurements of medium mass nuclei for the weak s-process.

#### **Neutron capture measurements with small sample masses:**

- Radio-isotopes for  $\gamma$ -ray astronomy <sup>59</sup>Fe(n, $\gamma$ ) and <sup>60</sup>Fe(n, $\gamma$ )
- Branch point nuclei, e.g. <sup>85</sup>Kr(n,γ), <sup>95</sup>Zr(n,γ), <sup>147</sup>Pm(n,γ), <sup>147</sup>Pm(n,γ), <sup>154</sup>Eu(n,γ), <sup>155</sup>Eu(n,γ), <sup>153</sup>Gd(n,γ), <sup>185</sup>W(n,γ)

# **Commissioning: 2012 FAIR, EURISOL can deliver enough RIB to produce samples**

R. Reifarth et al., PASA 2009, 26, 255–258

#### Summary

- Nuclear data on radioactive isotopes are extremely important for modern astrophysics (reactions and masses)
- FAIR + FRANZ offer contributions to almost every astrophysical nucleosynthesis process
- Experiments close to stability can already be performed with current setups (LAND/ESR, n\_TOF, DANCE, ...)