Precision Electron Collision Spectroscopy of Highly Charged Ions

Andreas Wolf Max-Planck-Institut für Kernphysik, Heidelberg, Germany

Nordic Winter Meeting on Physics at FAIR, March 21-26, 2010

Electron-ion collision resonances

Merged beams in storage rings

Precision measurements on low-energy resonances

Isotope shifts, QED contributions and hyperfine splitting in Li-like ions

Collision resonances on Be-like and B-like cores

Ultra-low energy ion beams

Atomic physics studies of rare nuclides

	Few-electron ions			or the second se		
ESR electron cooler E _{lab} ~ 30 250 keV I _e ~ 100 mA A 7 q+					H2N H2N H2N H2N H2N H2N H2N H2N H2N H2N	
H-like	•0	••	••	B-like		

Few-electron ions

High-energy dielectronic recombination

Low-energy dielectronic recombination

Merged beams in ion storage rings

http://www.mpi-hd.mpg.de/ion-storage

PRL 95, 183003 (2005)

Schuch et al.,

CRYRING - 4.2 MeV/u

Low-energy resonances with Li-like core

Low-energy resonances with Li-like core

n = 18 (j = 1/2), 8 (j = 3/2)

142,150Nd⁵⁸⁺ ESR – ~90 MeV/u

Brandau et al., Phys. Rev. Lett. 100, 073201 (2008)

n = 18 (j = 1/2), 8 (j = 3/2)

n = 20 (j = 1/2), 5 (j = 3/2)

C. Brandau et al. (2009)

236,237,238U89+ ESR

T_⊥ ~ 100 meV T_{||} ~ 0.2 meV

QED shifts and hyperfine structure

Core excitation energies ΔE (2s–2p)

High-resolution electron target

Photocathode electron target GaAs photocathode ~100 K ~1 W laser irradiation Cryogenic N, high pressure unit (10-20 kg) LN 2 supply lines D. A. Orlov, C. Krantz, A. Shornikov, et al.

D. A. Orlov et al., J. Appl. Phys. 106, 054907 (2009)

- Magnetic expansion (~0.4 T \rightarrow 0.02 T) yields 0.5...1 meV electron temperature (~5...10 K)
 - Cathode lifetime typ. 24 h
 - ~4 cathodes under vacuum in closed-cycle operation since >2 years
 - 2008: Beam transport down to < 1 eV with 10 µA current (0.01 T guiding field)

High-resolution electron target

Photocathode electron target

D. A. Orlov, C. Krantz, A. Shornikov, et al.D. A. Orlov et al., J. Appl. Phys. 106, 054907 (2009)

- Magnetic expansion (~0.4 T \rightarrow 0.02 T) yields 0.5...1 meV electron temperature (~5...10 K)
 - Cathode lifetime typ. 24 h
 - ~4 cathodes under vacuum in closed-cycle operation since >2 years
 - 2008: Beam transport down to < 1 eV with 10 µA current (0.01 T guiding field)

Hyperfine-resolved electron collisions $A^{q^+} + e \rightarrow (A^{(q^{-1})^+})^{**} \rightarrow (A^{(q^{-1})^+})^* + hv$

Rydberg resonances and hyperfine splitting of Sc¹⁸⁺ (1s²2s)

Hyperfine-resolved electron collisions $A^{q^+} + e \rightarrow (A^{(q-1)^+})^{**} \rightarrow (A^{(q-1)^+})^* + hv$

Rydberg resonances and hyperfine splitting of Sc¹⁸⁺ (1s²2s)

Hyperfine-resolved electron collisions $A^{q^+} + e \rightarrow (A^{(q-1)^+})^{**} \rightarrow (A^{(q-1)^+})^* + hv$

Rydberg resonances and hyperfine splitting of Sc¹⁸⁺ (1s²2s)

Hyperfine-resolved electron collisions

für Kernehvsi

Hyperfine-resolved electron collisions

Hyperfine-resolved electron collisions

Screened QED in Li-like ions

Core excitation energies $\Delta E (2s-2p) - QED$ contributions

compared to experimental relative accuracy

für Kernehysik

Electron collisions at the NESR

Electron collisions at the NESR

Projections for NESR electron target performance

Stored ion beams with keV energies

Cryogenic electrostatic storage ring CSR

Highly charged ions, large molecules, clusters (cations, anions) Under construction at MPIK, Heidelberg

CSR construction

Summary

Electron capture resonances on few-electron heavy ions

Energy resolution 1-100 meV for resonances at ~0.1...10 eV

Rydberg electrons probing core excitation:

Isotope shifts of heavy nuclei ^{142,150}Nd⁵⁸⁺. ²³⁶⁻²³⁸U⁸⁹⁺

Hyperfine splitting and screened QED in ²³⁸Sc¹⁸⁺

Towards Be-like systems: ⁷⁴Ge²⁸⁺

Merged electron-ion beams at NESR

Ultra-low energy beams (eV-keV/amu) at **FLAIR**

Coeffcient α [10⁴

Max-Planck-Institut Für Kernphysik

Max-Planck Institute for Nuclear Physics, Heidelberg, Germany

Stored and Cooled Ions (K. Blaum)

Atomic and molecular quantum dynamics A. W.

Atomic and molecular physics

Electron target

Photocathode

D. A. Orlov A. Petrignani B. Jordon-Thaden C. Krantz A. Shornikov D. Bing M. Mendes

M. Bera

Highly charged ion collisions

C. Kozhuharov

Collaborations

Univ. Giessen, Germany D. Bernhard S. Schippers E. W. Schmidt A. Müller

Columbia Univ., NYC M. Lestinsky D. Wolf Savin O. Novotný

Univ. of Stockholm, Sweden E. Lindroth F. Ferro

C. Brandau

GSI, Darmstadt

Stored and cooled ion instrumentation

TSR and accelerator

M. Grieser R. von Hahn R. Repnow R. von Hahn

