

•FAIR

- NuSTAR programme
- Pre-R³B experiments
- R³B developments
- Complementary NuSTAR projects

Nuclear reactions with radioactive beams at FAIR

Thomas Nilsson Chalmers University of Technology

NORDIC WINTER MEETING ON PHYSICS @ FAIR - Mar. 23 2010

+ Super-FRS – radioactive beams at FAIR

NORDIC WINTER MEETING ON PHYSICS @ FAIR - Mar. 23 2010

Nuclear STructure, Astrophysics and Reactions

> 800 members from 37 countries and 146 institutions

NORDIC WINTER MEETING ON PHYSICS @ FAIR - Mar. 23 2010

Similar for RIBF/FRIB/...-> T. Nakamura

FAIR Modularized Start Version

-> Talk by Th. Beier

 High-resolution in-flight and decay spectroscopy with RIBs (HISPEC/DESPEC)

AGATA - Advanced GAmma Tracking Array $4\pi \gamma$ -array for experiments at European accelerators providing radioactive and highintensity stable beams

-> Talks by Z. Podolyak, R. Page NORDIC WINTER MEETING ON PHYSICS @ FAIR - Mar. 23 2010

+ HISPEC/DESPEC physics

Research field	Experimental method (beam-energy range)	Physics goals and observables	Beam int. (particle/s)	
Nuclear structure, reactions and astrophysics	Intermediate energy Coulomb excitation, In- beam spectroscopy of fragmentation products $(E/A \sim 100 \text{ MeV})$	Medium spin structure, Evolution of shell structure and nuclear shapes, transition probabilities, moments,	10 ¹ 10 ⁵	
	Multiple Coulomb excitation, direct and deep-inelastic, fusion evaporation reactions (E/A ~ 5 MeV; Coulomb barrier)	high spin structure, single particle structure, dynamical properties, transition probabilities, moments,	10 ⁴ 10 ⁷	
	Decay spectroscopy (E/A = 0 MeV)	half-lives, spins, nuclear moments, GT strength, isomer decay, beta- decay, beta-delayed neutron emission, exotic decays such as two proton, two neutron.	10 ⁻⁵ 10 ³	

+ RB Reactions with Relativistic Radioactive Beams

Reactions in complete kinematics

• Perfectly adapted to in-flight production with Super-FRS

• Large variety, clear-cut reaction mechanisms

- Maximum nuclear transparency
- Relativistic focussing
- Resolution

RIB

Reaction type	Physics goals	
Knockout	Shell structure, valence-nucleon wave function, many-particle decay channels	
	unbound states, nuclear resonances beyond the drip lines	
Quasi-free scattering	Single-particle spectral functions, shell-occupation probabilities,	
	nucleon-nucleon correlations, cluster structures	
Total-absorption measurements	Nuclear matter radii, halo and skin structures	
Elastic p scattering	Nuclear matter densities, halo and skin structures	
Heavy-ion induced	Low-lying transition strength, single-particle structure, astrophysical S factor,	
electromagnetic excitation	soft coherent modes, low-lying resonances in the continuum,	
	giant dipole (quadrupole) strength	
Charge-exchange reactions	Gamow-Teller strength, soft excitation modes,	
	spin-dipole resonance, neutron skin thickness	
Fission	Shell structure, dynamical properties	
Spallation	Reaction mechanism, astrophysics, applications: nuclear-waste transmutation,	
	neutron spallation sources	
Projectile fragmentation and	Equation-of-state, thermal instabilities, structural phenomena in excited	
multifragmentation	nuclei, γ-spectroscopy of exotic nuclei	

Astrophysics -> R.Reifarth

NORDIC WINTER MEETING ON PHYSICS @ FAIR - Mar. 23 2010

Data-taking since 1990

The collective response of the nucleus: Giant Resonances

Electromagnetic excitation at high energies

Determination of 'photon energy' (excitation energy) via a kinematically complete measurement of the momenta of all outgoing particles (invariant mass)

Experimental Approach: Production of (fission-)fragment beams

Experimental Approach II: The LAND reaction setup @GSI

Dipole-strength distributions in neutron-rich Sn isotopes

+ S245@GSI - Unbound Light Nuclei

NORDIC WINTER MEETING ON PHYSICS @ FAIR - Mar. 23 2010

Proton knockout from 304 MeV/u ¹⁴Be S245@GSI

Yu. Aksyutina et al. PLB 666(2008)430

+ ¹H(¹⁴Be,2pn)¹²Li

Going beyond the dripline...

Yu. Aksyutina et al. PLB 666(2008)430

... and even further

+ Quasi-free scattering (QFS) –

Nuclear recoil momentum :

$$k_{\!A\!-\!1} \!=\! k_0 \!-\! k_1 \!-\! k_2 \!=\! -\! k_3$$

Separation energy of knocked-out nucleon

$$E_{s} = E_{0} - E_{1} - E_{2} - \frac{k_{A-1}^{2}}{2(A-1)}$$

Coplanar geometry

Correlation cross-section in the factorized DWIA :

$$\frac{d^{3}\sigma}{d\Omega_{1}d\Omega_{2}dE} = S_{3}F_{k}\frac{d\sigma_{pp}}{d\Omega}(E_{0},\theta,P_{eff})G(\vec{k}_{3})$$

spectroscopic free n-n distorted factor cross-section momentum distribution

+ QFS : Binding Energy Spectra

A.A. Cowley et al., Phys. Lett. B 359 (1995) 300.

Energy resolution ~ few MeV

TRIUMF 1988

+ Upgrades for QFS pilot exp

LAND setup: Detectors around the target

DSSDs for proton tracking

- 4 box detectors for proton tracking
- polar angle coverage $\approx 15^{\circ} \le \theta \le 80^{\circ}$
- resolution: $\Delta x \sim 100 \ \mu m$; $\Delta E \sim 50 \ keV$
- range: 100 keV < E < 14 MeV
- 2 in-beam detectors for tracking & ID of fragments and protons

Crystal Ball for proton spectrometry

- 4π gamma detector (*1980 ?)
- 162 NaI(Tl) crystals of 20 cm length

• New: Measure energy of recoil protons with additional readout of the forward 64 crystals (~ 2π) !

NORDIC WINTER MEETING ON PHYSICS @ FAIR - Mar. 23 2010

F. Wamers

+ 2-proton events (≥ 10 MeV) in Crystal Ball: Azimuthal Distribution

Reactions with Relativistic Radioactive Beams

Kinematically complete measurement of reactions with high-energy secondary beams

- Nuclear Astrophysics
- Structure of exotic nuclei
- Neutron-rich matter

R³B Si Recoil Tracker WG

Tasks:

- Simulations of target-recoil detector
 - elastic, inelastic, quasifree ...
- Si-microstrip prototype testing
 - micro-strip, MAPS ...
- Si tracker mechanical design
- Mechanical integration of target-recoil detector sub-systems
 - with LH2 target and calorimeter
- FEE and DAQ
 - 100k channels, new ASIC design (low thresholds, self-triggering)
- Si-tracker construction, assembly and installation
 - Liverpool Semiconductor Centre (ATLAS, LHCb, etc)
- Si-ladder assembly testing

WG Coordinator: Roy Lemmon – STFC Daresbury Laboratory, UK

CALIFA/R³B R&D

General design of the detector based on kinematical considerations

stano 00 150

100

 $\Delta E/E \sim 5 \%$

-> Talk by D. DiJulio

FAIR

Channel WG Coordinator: Dolores Cortina-Gil, Univ. Santiago de Compostela

7000 8000

4000 5000 6000

3000

Engineering design and Mechanical structure \rightarrow based on carbon fibre alveolus

4×50 cm

> test with neutrons in 2009, full size prototype in 2010

NUSTAR/ELISe experiment

AIC option:

- 30 MeV antiprotons
- detector system in ring arcs
- 65]

Schottky probes NORDIC WINTER MEETING ON PHYSICS @ FAIR – Mar. 23 2010

125-500 MeV electrons

- 200-740 MeV/u RIBs
- → up to 1.5 GeV CM energy
- spectrometer setup at the interaction zone & detector system in ring arcs

Elastic Scattering

\rightarrow access to the interior ...

Please cite this article as: E. Khan, M. Grasso, J. Margueron, N. Van Giai, Detecting bubbles in exotic nuclei, *Nuclear Physics A* (2007), doi: 10.1016/j.nuclphysa.2007.11.012

Nucl. Phys. A800(2008)37 Phys. Rev. C79(2009)034318

 $L=2.7 \times 10^{28} \text{ cm}^{-2} \text{ s}^{-1}$

 complements other methods e.g. GR studies

NORDIC WINTER MEETING ON PHYSICS @ FAIR - Mar. 23 2010

Inelastic scattering in the eA collider

- Excitation energy is measured directly (below and above particle tresh.)
- momentum transfer dependence → multipolarity of transition can be determined
- final state identification with unprecendented efficiency

 $(e,e'X) \rightarrow (e,e'A') \rightarrow$ suppression of elastic radiative tail (no background)

➔ Low lying strength (structure) E.g.: E1-Soft-Dipole mode: transition density peaks in the interior.

Sagawa, Esbensen, NUPA693(2001)448

EXotic Nuclei Studied in Light-Ion Induced Reactions at the NESR Storage Ring

Light-ion scattering in the storage ring (EXL)

Scattering in inverse kinematics

Low-momentum transfer region often most important, e.g.,

- giant monopole excitation
- elastic scattering
- Experimental difficulty
 - low recoil energies
 - thin targets (low luminosity)

EXL solution:

in-ring scattering at internal gas-jet targets

gaining back luminosity due to circulation frequency of $\sim 10^6$

Conclusions

- R³B Reactions with relativistic radioactive beams yield unique possibilities for studies of nuclear systems at the extremes, based on a generic fixed-target set-up
 - Fully adapted to Super-FRS production method
- Developing and enlarging the experimental toolbox at R³B requires cutting-edge instrumentation
 - Has to be accompanied by efficient and reproducible methods for data handling and analysis
- Complementary possibilities at EXL, ELISe and HISPEC
 - Ring branch unique for FAIR
- NuSTAR week in Lund Oct. 4-8

NORDIC WINTER MEETING ON PHYSICS @ FAIR - Mar. 23 2010