

OWNERS AND ADDRESS.

Mass measurements and laser spectroscopy with radioactive ion beams – FAIR perspective

- Ground-state properties (at ISOL facilities)
- Mass measurements
- Optical spectroscopy
- Recent highlights
- FAIR; MATS and LaSpec

Ari Jokinen Department of Physics University of Jyväskylä

Ground-state properties

Valence proton-neutron interaction energy δV_{pn}

* Reactions (transfer, double pion charge exchange, invariant masses,)

```
* Decay (α, β+, β-, .....)
```

Direct measurements

- * RF Spectrometers (MISTRAL)
- * Bp-TOF Spectrometers (SPEG)
- * Cyclotrons (CSS2, CIME)
- * Ion traps (ISOLTRAP, CPT, JYFLTRAP, SHIPTRAP,)
- * Storage rings (FRS-ESR)
- * Electrostatic mirror systems

Ion motions in Penning trap

$$\sum \vec{F} = q \left(\vec{E} + \vec{v} \cdot \vec{x} \cdot \vec{B} \right)$$

Three harmonic eigenmotions

1. Axial motion:

$$\omega_z = \sqrt{\frac{qV_0}{md^2}}$$

2. Magnetron motion (slow):

$$\boldsymbol{\omega}_{-} = \frac{\boldsymbol{\omega}_{c}}{2} - \sqrt{\frac{\boldsymbol{\omega}_{c}^{2}}{4} - \frac{\boldsymbol{\omega}_{z}^{2}}{2}}$$

3. **Reduced Cyclotron** motion (fast):

$$\boldsymbol{\omega}_{+} = \frac{\boldsymbol{\omega}_{c}}{2} + \sqrt{\frac{\boldsymbol{\omega}_{c}^{2}}{4} - \frac{\boldsymbol{\omega}_{z}^{2}}{2}}$$

$$\Box_{c} = \underbrace{\boldsymbol{\omega}_{c}}_{+} + \underbrace{\boldsymbol{\omega}_{-}}_{m} = \frac{\boldsymbol{q}}{\boldsymbol{m}} \cdot \boldsymbol{B}$$

Resonance frequency measurement – the time-of-flight technique

M. König et al, Int. J. Mass. Spec Ion Proc. 142 (1995) 95

Nordic – FAIR, Björkliden, Mar-2010

ISOL

ISOL approach

T_{1/2} ~ 10 ms no reactive elements no refractory elements

Good conditions for spectroscopy: highly successful and productive

JYFLTRAP setup @ IGISOL

Penning Traps at Accelerators

K. Blaum, Phys. Rep. 425 (2006) 1

Complementary of Penning trap projects

Type of reaction	ISOLTRAP	СРТ	SHIPTRAP	JYFLTRAP	LEBIT	TITAN	SMILE-TRAP	MAFF-TRAP	HITRAP	MATS/FAIR
Conventional ISOL- technique	Х					Х				
Fusion evaporation reaction		X	X							
IGISOL				Χ						
Fragmentation reaction					X				Х	X
neutron-induced fission								X		
Highly-charged ions						X	X		X	X
Stable ions				Χ			X		X	
Trap-assisted spectroscopy				X						X

Trap performance (ENAM 2004)

Nordic – FAIR, Björkliden, Mar-2010

Trap performance (ENAM 2008)

Nordic – FAIR, Björkliden, Mar-2010

Nuclear structure (10-100 keV)

Global correlations (100 keV) Local correlations (10 keV)

shell structure, spin-orbit interaction, pairing, collectivity
 Drip-line phenomena and halos (1 keV)

Nuclear astrophysics (1 keV)

Charge symmetry in nuclei (<1 keV) Isospin multiplets Coulomb energy differences

Test of Standard Model (< 100 eV) δ*m/m* < 1.10⁻⁹

Nuclear β decay. Electroweak interaction

- CVC theory and unitarity of CKM matrix
- Neutrinoless double β decay

JYFLTRAP masses and AME2003

http://research.jyu.fi/igisol/JYFLTRAP_masses/ AME2003, G. Audi et al., NPA 729 (2003) 337

Mass predictions for Z=55

JYFLTRAP masses vs predictions

S. Goriely N. Chamel and J. M. Pearson, PRL 102 (2009) 152503

"... Crossing the 0.6 MeV accuracy threshold ..."

HFB-17

	HFB-16	HFB-17
$\sigma(2149M)$ [6]	0.632	0.581
$\bar{\epsilon}(2149M)$ [6]	-0.001	-0.019
$\sigma(M_{\rm nr})$ [6]	0.748	0.729
$\bar{\boldsymbol{\epsilon}}(M_{\mathrm{nr}})$ [6]	0.161	0.119
$\sigma(S_n)$ [6]	0.500	0.506
$\bar{\boldsymbol{\epsilon}}(S_n)$ [6]	-0.012	-0.010
$\sigma(Q_{\beta})$ [6]	0.559	0.583
$\bar{\epsilon}(Q_{\beta})$ [6]	0.031	0.022
$\sigma(434M)$ [11]	0.484	0.363
$\bar{\epsilon}(434M)$ [11]	-0.136	-0.092
$\sigma(142M)$ [12]	0.516	0.548
$\bar{\epsilon}(142M)$ [12]	-0.070	0.172
$\sigma(R_c)$ [13]	0.0313	0.0300
$\bar{\epsilon}(R_c)$ [13]	-0.0149	-0.0114
$\theta(^{208}\text{Pb})$	0.15	0.15

[6] G. Audi, et al. Nucl. Phys. A729, 337 (2003). [12] http://research.jyu.fi/igisol/JYFLTRAP_masses/

Collinear laser spectroscopy with bunching

been demonstrated in an on-line isotope shift and hyperfine structure measurement on radioactive ¹⁷⁵Hf.

Nordic – FAIR, Björkliden, Mar-2010

COLLAPS & ISCOOL for Ga at ISOLDE

The power of bunching the ions with ISCOOL

Sufficient number of peaks for μ , Q_s , $\delta < r^2 >$ and I

Spin inversion (also seen between ⁷³Cu & ⁷⁵Cu, K.T. Flanagan *et al.*, PRL 103 (2009) 142501)

Not quantitatively predicted by any theory

Optical pumping in the cooler

P. Campbell, Hyp. Int. 171 (2007) 143 B. Cheal, PRL 102 (2009) 222501 (Nb-case)

> Access to more accessible transitions (Mo) More efficient transitions (Nb) \succ New elements to study

Roadmap to polarization in the cooler

JYFL

Nuclear structure physics around Z~40, N~60

F.C. Charwood *et al.*, Phys. Lett. B 674 (2009) 23, B. Cheal *et al.*, Phys. Rev. Lett. 102 (2009) 222501

S_{2n}: a complementarity from mass measurements

Calculations using Gogny interaction by R.R. Rodriguez-Guzman (FiDiPro)

JYFL

S_{2n}: a probe of nuclear structure ?

*Calculations (HFB mean field) by R.R. Rodriguez-Guzmán (April 2009) See also: PRC 78 (2008) 034314

Motivation: ¹³²Sn as r process 'waiting-point', previous experimental evidence for N=82 shell quenching

Method: 'classical' ToF resonance To suppress isobars: measured as molecule X+³⁴S

neutron shell gap $\Delta_n(N_0, Z) = S_{2n}(N_0, Z) - S_{2n}(N_0 + 2, Z)$

M. Dworschak et al., PRL 100, 072501 ('08)

Neutron-rich masses close to ¹³²Sn

Pairing gaps close to N=82

Non-empirical nuclear energy functionals, pairing gaps and odd-even mass differences T. Duguet and T. Lesinski, in arXiv:0907:1043v1 6 July 2009

Masses of ¹¹Li and ⁸He

Evolution of N=50 shell gap

J. Hakala et al. PRL 101 (2008) 052502 + ⁸¹Zn: S. Baruah et al., PRL 101 (2008) 262501

Rp- and vp-process studies

Saha equation:

JŸFL

⁸⁸Tc mass 1031 keV higher than in AME2003 \rightarrow ⁸⁷Mo(p,y)⁸⁸Tc suppressed

A. Kankainen et al., EPJA 29 (2006) 271

JYFLTRAP/SHPTRAP data: C. Weber et al., arXiv:0808.4065v1 [nucl-ex]

 \cdot Branching into the cycle reduced from 50% to 3% at $^{105}{\rm Sn}$

JYFL

- Reduces late-time He production
- Slightly longer, less luminous burst tail

 Final composition: broader distribution of ⁶⁸Zn, ⁷²Ge, ¹⁰⁴Pd, ¹⁰⁵Pd and residual He

Physics of superallowed beta decay

Conserved vector current hypothesis: *ft* should be constant

$$Ft = ft(1+\delta_R) \left[1 - \left(\delta_C - \delta_{NS}\right)\right] = \frac{K}{2G_V^2(1+\Delta_R)}$$

- $\begin{aligned} \delta_{\mathsf{R}} & \quad \mbox{radiative correction} \\ & \quad f(\mathsf{Z},\mathsf{Q}_{\mathsf{EC}})\,\text{~~}1.5~\% \end{aligned}$
- $\delta_{\text{C}}\text{-}\delta_{\text{NC}}$ isospin symmetry breaking correction f(nuclear structure), 0.3-0.7%
- Δ_R nucleus-independent radiative correction f(interactions), ~2.4%

Exp. parameters to be determined: Beta decay half-life $T_{1/2}$ Beta decay branching ratio I_b Decay energy Q_{EC}

Single nucleus: determination of $G_V^2(1 + \Delta_R)$

Many transitions: Check if Ft is constant \rightarrow Test of the CVC

One can deduce V_{ud} by combining beta decay and muon decay data

 $V_{ud}^2 = \frac{G_V^2}{G_u^2}$

Cabibbo-Kobayashi-Maskawa quark mixing matrix:

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \cdot \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

New Q_{EC}-values, V_{ud} and unitarity test

Nordic – FAIR, Björkliden, Mar-2010

Discovery of a new isotope ²²⁹Rn

Motivation: δ Vpn values, nuclear structure

JYFL

Method: 'classical' ToF resonance for ²²³⁻²²⁹Rn

7 new masses with σ <20keV, All never measured directly before A new isotope of radon discovered: ²²⁹Rn

(M. Kowalska)

Nordic – FAIR, Björkliden, Mar-2010

F

Discovery of nuclear isomer at LEBIT

RFQ Gas cell Beam cooler 9.4-T Penning trap LEBIT at NSCL and buncher ion guide mass spectrometer First trapped ions from projectile Mass filter Cooler Trap fragmentation: G. Bollen et al, PRL 96 (2006) 152501 β Fragmentation of 130 MeV/u ⁷⁶Ge lon (He) (Ne) detector β primary beam β Test beam \rightarrow Fe and Co fragments with an energy ion source of 86 MeV/u 26 Mean time of flight /µs 25 $(13/2^+)$ 1649 24 $(13/2^+)$ 23 (13/2+) 22 ground isomeric 819 ⁶⁵Fe²⁺ 21 772 state state 959 $(7/2^{-})$ -20 20 40 -60 -40 0 60 861 9/2 _{VBE}-4438090/Hz (9/2+) (T_{1/2}>150ms) 402(5) (9/2+) 75(21)µs (9/2+) $(5/2^{-})$ 388 5/2+) E1 $(3/2^{+})$ 366 364 · (5/2-) 357 M2 207 5/2-M1 E2 E1 M. Block et al. (1/2-) (1/2) 3/2-(3/2-) ${}^{61}_{26}Fe_{35}$ $^{63}_{26}Fe_{37}$ $^{65}_{26}Fe_{39}$ $^{67}_{26}Fe_{41}$ PRL 100, 132501 (2008)

Direct mass measurements above uranium bridge the gap to the island of stability

M. Block¹, D. Ackermann¹, K. Blaum², C. Droese³, M. Dworschak¹, S. Eliseev², T. Fleckenstein⁴, E. Haettner⁴, F. Herfurth¹, F. P. Heßberger¹, S. Hofmann¹, J. Ketelaer⁵, J. Ketter², H.-J. Kluge^{1,6}, G. Marx³, M. Mazzocco⁷, Yu. N. Novikov^{1,8}, W. R. Plaß^{1,4}, A. Popeko⁹, S. Rahaman¹⁰[†], D. Rodríguez¹¹, C. Scheidenberger^{1,4}, L. Schweikhard³, P. G. Thirolf¹², G. K. Vorobyev¹ & C. Weber¹⁰[†]

Nordic – FAIR, Björkliden, Mar-2010

In-flight fragmentation – towards MATS and LaSpec

Optical and ion trap techniques developed mainly at ISOL facilities have provided nuclear (ground) state properties decades. LaSpec+MATS offers the possibility to make these studies at the limits of stability and lifetime.

Layout at the Low Energy Branch

JŸFL

Layout of MATS and LaSpec experiments (TDR)

Present status and LaSpec regions of interest

JYFL

- TDR has been submitted (to be published)
- Working collaboration with responsibilities
- LEB hall in module 4, a construction plan and schedule for modules 0-3
- R&D work in progress:
 - Gas cell (KVI, Giessen, JYFL)
 - TRIGA laser and trap setups (Mainz)
 - RFQ, optical manipulation, ... (JYFL)
 - Detector trap (LMU)
 - FT-ICR (Heidelberg)

Optical and ion trap techniques developed mainly at ISOL facilities have provided nuclear (ground) state properties decades. LaSpec+MATS offers the possibility to make these studies at the limits of stability and lifetime.

Colleagues at JYFL

T. Eronen, J. Hakala, A. Kankainen, V.Kolhinen, I. Moore,
H. Penttilä, J. Rissanen, A. Saastamoinen, and J. Äystö
+ (V.-V. Elomaa, U. Hager, S. Rahaman, S. Rinta-Antila,
T. Sonoda, C. Weber)

Collaborators:

J. Billowes, B. Blank, P. Campbell, J. Dobaczewski, J. Hardy,

F. Herfurth, J. Kurpeta, Y. Novikov, J. Suhonen, ...

ISOLTRAP & SHIPTRAP collaborations for sharing the data

Material for this presentation:

Michael Block, Georg Bollen, Bradley Cheal, Magda Kowalska, Dave Lunney, Wilfried Nörtershäuser