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(Antl)hydrogen ground—state hyperf Ine spl:%‘

O Interaction between (anti)proton and electron (positron) spin magnetic
moments

O Results in a triplet (F = 1) M=1 M=0

and a singlet (F = 0) sublevels

0O Between F=1and F=0:;

3
I ¢
VHF——6< e ) el oy so(l+6) ~1.42 GHz

3 mp _I_ me mp /’LN

O Vnr is appr. proportional to the (anti)proton magnetic moment s

O 9: higher-order QED & strong interaction corrections: ~10-3

O Theoretical uncertainty on 0: ~10"




O Bluhm, Kostelecky, Russell, PRL 82: Standard Model extension (SME)

including
O Charge-Parity-Time invariance violating (CPTV), and

O Lorentz invariance violating (LIV)
terms in the Lagrangian

O Correction to the 1s (& 2s) hyperfine levels:

N e
+(=05 + d3gme + Hip)my /|my|

+(=b5 + dzomyp + Hig)my/|mi

O Parameters a, d,and H reverse sign for antihydrogen

O Parameters a and b have a dimension of energy
O Not relative, but absolute precision matters
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= relati ision (length
measured quantity (right edge) relative precision (length)
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0O “Best CPT test”: KO-KC Am/m ~ 10718 & 10° Hz

O Relatively accuracy of 107 of H GS-HFS (~ 1 GHz x 107™* = 10° Hz) can
already be competitive

O But: K%K is sensitive to a, H GS-HFS is sensitive to b

O The two measurements cannot be compared directly

O CPT violation might appear in one physical system, but not in another
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O 1s-2s frequency mainly determined by electron (positron) mass

O (Anti)proton mass only comes at 4th digit

O This doesn’t mean 1s-2s is not worthwhile to measure;
GS-HFS and 1s-2s complement each other




0O Highest precision for hydrogen: 10712 with hydrogen maser
O But: maser is not possible for antihydrogen

O Spectroscopy with trapped antihydrogen: low precision due to strong
confining field

O Good candidate: atomic beam with RF resonance

O no H trapping needed — no need for ultra-cold (< 1 K) H

O atomic beam method can work up to 50-100 K
0O Hatoms can be guided with inhomogeneous magnetic field

O Measurement at the Antiproton Decelerator (AD) of CERN
from ~2011




Ground—state antihydrogen in magnetic ﬁeld}

Energies of hyperfine states change in magnetic field:
O Increase for (F, M) = (1,—1) and (1, 0): low-field seekers (u < 0)
O Decrease for (F, M) = (1, 1) and (0, 0): high-field seekers (u>0)
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Measurement principie_}

p and e+trap antihydrogen
recombination detector
sextupole 1 microwave sextupole 2

cavity

0O Hatoms from superconducting Paul trap

O Sextupole #1 polarizes beam: only low-field seekers pass through;
high-field seekers are defocused

O Radio frequency resonator at 1.42 GHz to flip the e* spin
O Conversion from low-field seeker to high-field seeker
O Sextupole #2 analyzes spin: only low-field seekers pass through

O Counts in antihydrogen detector will vary with RF frequency




O “Conventional” way to make antihydrogen: nested Penning trap
O Source too large for atomic beam method
O Laser access is difficult
O Too small extraction solid angle
O Superconducting two-frequency Paul trap
O 2 superimposed RF fields to confine e* and p
O under development at CERN

O Cusp trap (anti-Helmholtz coils)

O larger source size, but could provide (partially) polarized H beam

O developed at RIKEN, already working at CERN, but no Hyet
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O Electrodes: 2 end caps, 1 ring

O e from positron source,
p from SC linear Paul trap

- ////////> A % - O RF:350 MHz for e*, 1 MHz for p

7 \ O Laser-assisted de-excitation
// 7 O Good laser access
ntihydrogen
ejection

O Point-like H source
O Large H extraction solid angle
O Only 1s or 2s atoms are emitted

O Expected production rate:
~200 H/s




O Sextupole magnet parameters for 50 K H:

O internal diameter: 10 cm
O field at the inner wall: 3 tesla
O effective length (field FWHM): 22 cm
O Superconducting magnet is the best solution
O Total beam line length: ~150 cm
O Total efficiency: ~1073
0O Expected count rate: ~10 H/min




0O Expected production rate: ~10° H/s

OAW



Measurement prmc:ple w:th the cusp trap § ‘

JJ
O
- ——— antihydrogen

\ detector

cusp trap microwave sextupole 2
cavity

O Inhomogeneous field can focus low-field seekers, while it can defocus
high-field seekers

O Rest of the system is the same as with the Paul trap
O Many unknowns
Temperature (5 K?) - “magnetically induced radiative cooling”

Polarization degree (4:1?) - depends on T

Fraction of ground-state atoms

Ground-state low-field seekers might be trapped forever?
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O ldeal resonator would have a perfect B-field homogeneity in X-Y-Z

O But: volume size is comparable to half-wavelength = perfect
homogeneity is impossible

O Preferred solution: double stripline resonator

by Tom Kroyer, CERN
17
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O Meshes on the front & back planes
O Stripline length in Z: N/2, A\, 3N\/2, ...
O Width & stripline distance: arbitrary
O Low Q (500-1000)

O Frequency can be changed by 1-2 MHz
without external tuning -

O Homogeneity in X-Y plane is quite good
O Longitudinal: B ~ sin(Z)
O Zero field at the center plane

O Front & back halves of the resonator
are in opposite phase

O Their effects cancel each other when | | LT

Vsield = VHF independently of velocity by Tom Kroyer, CERN
18
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Radiofrequency resonator |

O Meshes on the front & back planes
O Stripline length in Z: N/2, A\, 3N\/2, ...
O Width & stripline distance: arbitrary
O Low Q (500-1000)

O Frequency can be changed by 1-2 MHz
without external tuning

O Homogeneity in X-Y plane is quite good
O Longitudinal: B ~ sin(Z)

O Zero field at the center plane

O Front & back halves of the resonator
are in opposite phase

O Their effects cancel each other when
Vsield = VHF independently of velocity
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O Meshes on the front & back planes
O Stripline length in Z: N/2, A\, 3N\/2, ...
O Width & stripline distance: arbitrary
O Low Q (500-1000)

O Frequency can be changed by 1-2 MHz
without external tuning
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O Homogeneity in X-Y plane is quite good
O Longitudinal: B ~ sin(Z)

O Zero field at the center plane

[

* 90 PPV

O Front & back halves of the resonator
are in opposite phase

o 9§ 9w ¢

O Their effects cancel each other when — o

Vsield = VHF independently of velocity by Tom Kroyer, CERN
18
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Resonance proﬁl_ej

O ldeal profile with (non-existing) ideal RF field
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Resonance proﬁlgj

O ldeal profile with (non-existing) ideal RF field

O ldeal profile with double stripline resonator

signal [arb.u.]
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Resonance proﬁIEj

O ldeal profile with (non-existing) ideal RF field

O ldeal profile with double stripline resonator

signal [arb.u.]
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O Splitting is essentially Doppler splitting = proportional to velocity
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MC simulations with the cusp trapil

O Same superconducting magnet as for the Paul trap
O Total efficiency: ~107>

O Expected count rate: ~100 H/min
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Simulated resonance profiles }
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=l Cusp trap with the sextupole beam line }

3O Preliminary design

[He filling

180,00 570,00

pulse tube

current leads Y
Ryl
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. . center of cusp trap
oy 5]
L
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antihydrogen ' = Y
detector . = . 5

/[He bath =&

=
thermal shield vacuum: ~107'° mbar




Plasma Physics

Atomic Physics

p-LINAC

/ Super-FRS

offices and
preparation
laboratories

Low-energy
cave AP

low-energy p

low-energy HCI

. high-energy p

beam from
NESR

Sources

—— 4-100 MeV/u HCl 30 -400 MeV p

<4 MeV/uHCl 0.3- 30 MeVp
< 0.1 MeV/uHCI 0.005-0.3 MeVp
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Future at FLAIE_}

O FLAIR is significantly better than AD/ELENA:

O Higher intensity (factor 10-100)

O Lower energy (5 keV vs. 100 keV)

O Slow extraction
O Same GS-HFS measurement can be continued at FLAIR, or
O New measurement methods could be tried:

O Ramsey’s separated oscillatory field (narrower resonance line,
less sensitivity to magnetic field inhomogeneities)

O Circulating antihydrogen beam!?




Ground-state hyperfine splitting of antihydrogen is a good candidate to
test CPT violation effects

Kostelecky et al.: not relative but absolute precision matters

Measurement: atomic beam method

H source: cusp trap (soon) & Paul trap (later)

1(+1) superconducting sextupole(s), 1 RF resonator
Expected count rate with cusp trap: ~100 H/min

Expected precision: ~107; ~0.2 kHz = ~10-12 eV
3 orders of magnitude better than the K%-K? mass comparison

First measurements at the AD @ CERN, later at FLAIR @ FAIR




