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(Anti)hydrogen ground-state hyperfine splitting

Interaction between (anti)proton and electron (positron) spin magnetic 
moments

Results in a triplet (F = 1)
and a singlet (F = 0) sublevels

Between F = 1 and F = 0:

νHF is appr. proportional to the (anti)proton magnetic moment μp̅

δ: higher-order QED & strong interaction corrections: ~10-3 

Theoretical uncertainty on δ: ~10-6
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SME including CPTV and LIV

Bluhm, Kostelecký, Russell, PRL 82: Standard Model extension (SME) 
including

Charge-Parity-Time invariance violating (CPTV), and 
Lorentz invariance violating (LIV)

terms in the Lagrangian
Correction to the 1s (& 2s) hyperfine levels:

Parameters a, d, and H reverse sign for antihydrogen
Parameters a and b have a dimension of energy

Not relative, but absolute precision matters
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“Best CPT test”: K0-K0̄ Δm/m ~ 10−18 ⇔ 105 Hz

Relatively accuracy of 10−4 of H̄ GS-HFS (~ 1 GHz × 10−4 = 105 Hz) can 
already be competitive

But: K0-K̄0 is sensitive to a, H̄ GS-HFS is sensitive to b

The two measurements cannot be compared directly

CPT violation might appear in one physical system, but not in another
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1s-2s frequency mainly determined by electron (positron) mass

(Anti)proton mass only comes at 4th digit

This doesn’t mean 1s-2s is not worthwhile to measure;
GS-HFS and 1s-2s complement each other



Measurement of the H̄ GS-HFS

Highest precision for hydrogen: 10−12 with hydrogen maser

But: maser is not possible for antihydrogen

Spectroscopy with trapped antihydrogen: low precision due to strong 
confining field

Good candidate: atomic beam with RF resonance

no H̄ trapping needed → no need for ultra-cold (< 1 K) H̄

atomic beam method can work up to 50-100 K

H̄ atoms can be guided with inhomogeneous magnetic field

Measurement at the Antiproton Decelerator (AD) of CERN
from ~2011
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Ground-state antihydrogen in magnetic field
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e+ p

Increase for (F, M) = (1, −1) and (1, 0): low-field seekers (μ < 0 )

Decrease for (F, M) = (1, 1) and (0, 0): high-field seekers (μ > 0 )

Energies of hyperfine states change in magnetic field:
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H̄ atoms from superconducting Paul trap

Sextupole #1 polarizes beam: only low-field seekers pass through;
high-field seekers are defocused

Radio frequency resonator at 1.42 GHz to flip the e+ spin

Conversion from low-field seeker to high-field seeker

Sextupole #2 analyzes spin: only low-field seekers pass through

Counts in antihydrogen detector will vary with RF frequency



Antihydrogen source

“Conventional” way to make antihydrogen: nested Penning trap

Source too large for atomic beam method

Laser access is difficult

Too small extraction solid angle

Superconducting two-frequency Paul trap

2 superimposed RF fields to confine e+ and p̅

under development at CERN

Cusp trap (anti-Helmholtz coils)

larger source size, but could provide (partially) polarized H̄ beam

developed at RIKEN, already working at CERN, but no H̄ yet
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Antiproton
injection

Positron
injection

Antihydrogen
ejection

11000 nm laser 377 nm (886 nm)
11d -> 2s/3d laser

Superconducting two-frequency Paul trap
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Electrodes: 2 end caps, 1 ring

e+ from positron source,
p̅ from SC linear Paul trap

RF: 350 MHz for e+, 1 MHz for p ̅

Laser-assisted de-excitation

Good laser access

Point-like H̄ source

Large H̄ extraction solid angle

Only 1s or 2s atoms are emitted

Expected production rate:
~200 H̄/s



MC simulations with the Paul trap

Sextupole magnet parameters for 50 K H̄:
internal diameter: 10 cm
field at the inner wall: 3 tesla
effective length (field FWHM): 22 cm

Superconducting magnet is the best solution
Total beam line length: ~150 cm
Total efficiency: ~10−3 
Expected count rate: ~10 H̄/min
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Measurement principle with the cusp trap
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Expected production rate: ~105 H̄/s
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Measurement principle with the cusp trap

Inhomogeneous field can focus low-field seekers, while it can defocus 
high-field seekers

Rest of the system is the same as with the Paul trap

Many unknowns
Temperature (5 K?) - “magnetically induced radiative cooling”

Polarization degree (4:1?) - depends on T

Fraction of ground-state atoms

Ground-state low-field seekers might be trapped forever? 16



Radiofrequency resonator
Ideal resonator would have a perfect B-field homogeneity in X-Y-Z 

But: volume size is comparable to half-wavelength → perfect 
homogeneity is impossible

Preferred solution: double stripline resonator
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by Tom Kroyer, CERN



Radiofrequency resonator
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Meshes on the front & back planes

Stripline length in Z: λ/2, λ, 3λ/2, ...

Width & stripline distance: arbitrary

Low Q (500-1000)

Frequency can be changed by 1-2 MHz 
without external tuning

Homogeneity in X-Y plane is quite good

Longitudinal: B ~ sin(Z)

Zero field at the center plane

Front & back halves of the resonator 
are in opposite phase

Their effects cancel each other when 
νfield = νHF independently of velocity by Tom Kroyer, CERN
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Resonance profile
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Resonance profile

19

Ideal profile with (non-existing) ideal RF field
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Resonance profile
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Ideal profile with (non-existing) ideal RF field

Ideal profile with double stripline resonator MW frequency [Hz]
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Resonance profile
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Ideal profile with (non-existing) ideal RF field

Ideal profile with double stripline resonator MW frequency [Hz]
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Splitting is essentially Doppler splitting → proportional to velocity 



MC simulations with the cusp trap
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Same superconducting magnet as for the Paul trap

Total efficiency: ~10−5 

Expected count rate: ~100 H̄/min
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π1σ1 νσ νπ

B0 = 1 G ± 0.5 mG,  T = 5 K

νσ & νπ → νHF

ΔνHF ≃ 210 Hz → ΔνHF/νHF ≃ 1.5×10-7 



Cusp trap with the sextupole beam line

Preliminary design

22

pulse tube

place of
antihydrogen

detector

micro-
wave
cavity

TMP

thermal shield

sextupole coil

vacuum: ~10-10 mbar

center of cusp trap

current leads

lHe filling

lHe bath



Future at FLAIR
Facility for Low-energy Antiproton and Ion Research
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Future at FLAIR

FLAIR is significantly better than AD/ELENA:

Higher intensity (factor 10-100)

Lower energy (5 keV vs. 100 keV)

Slow extraction

Same GS-HFS measurement can be continued at FLAIR, or

New measurement methods could be tried:

Ramsey’s separated oscillatory field (narrower resonance line, 
less sensitivity to magnetic field inhomogeneities)

Circulating antihydrogen beam?
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Summary

Ground-state hyperfine splitting of antihydrogen is a good candidate to 
test CPT violation effects

Kostelecký et al.: not relative but absolute precision matters

Measurement: atomic beam method

H̄ source: cusp trap (soon) & Paul trap (later)

1(+1) superconducting sextupole(s), 1 RF resonator

Expected count rate with cusp trap: ~100 H̄/min

Expected precision: ~10-7; ~0.2 kHz = ~10-12 eV
3 orders of magnitude better than the K0-K0̄ mass comparison

First measurements at the AD @ CERN, later at FLAIR @ FAIR
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