Pionic Fusion Study of 3N Clustering in the A=6 System

Chr. Bargholtz, L. Gerén, K. Lindberg, P. - E. Tegnér, I. Zartova

Stockholm University, Sweden

Physics Case

- Why pionic fusion?
- Why ³He+³He?
- What are isobaric states?
- What are halo nuclei and why

are they interesting?

- Two previous experiments done
- by the group on the subject
- Experimental set-up
- Analysis and results
- > Summary

Why pionic fusion?

We study the reaction: ${}^{3}\text{He} + {}^{3}\text{He} -> {}^{6}\text{Li} + \pi^{+}$

the experiment is sensitive to the high momentum parts of the wave function

${}^{4}\text{He} + \text{d} \rightarrow {}^{6}\text{Li}_{3.56} + \pi^{0}$ M. Andersson et al. Phys. Lett. B 481 (2000) 165 d + ${}^{4}\text{He} \rightarrow {}^{6}\text{He}_{g.s} + \pi^{+}$ M. Andersson et al. Nuclear Physics A 779 (2006) 47

 $Why^{3}\mathcal{H}e + {}^{3}\mathcal{H}e ?$

- ⁶Li can be described as a bound state of ³He + ³H Le Bornec et al. PRL 47 (1981) 1870
- In the present experiment we probe the relative wave function between ³He and ³H
 In ⁴He + d -> ⁶Li_{3.56} + π⁰ we probe the relative wave function between ⁴He and dineutron.

What are isobaric states?

Why halo nuclei?

- 1. In 1985 Tanihata discovered abnormally spatially extended nuclei, such as ^{6,8}He, ¹¹Li, ¹¹Be
- 2. They are interesting quantum mechanical systems

3. They are also interesting in astrophysical processes and especially in nucleosynthesis

What are halo nuclei?

A halo nucleus consists of a core that is surrounded by one or more nucleons with wave functions extending far beyond the core (usually neutrons)

Light nuclei

Previous experiments

> Isospin selective: I = 1 states of the A=6 nuclei selected

d + ⁴He -> ⁶He_{g.s} + π^+ > Isospin non selective, both ground and I = 1 excited states are produced

 $^{3}\text{He} + {}^{3}\text{He} -> {}^{6}\text{Li} + \pi^{+}$

 ${}^{4}\text{He} + \text{d} \rightarrow {}^{6}\text{Li}_{3.56} + \pi^{0}$

 ${}^{4}\mathcal{H}e + d -> {}^{6}Li_{3.56} + \pi^{0}$

$$\begin{split} & \mathsf{E}_{\text{c.m.}} = 1.2 \text{ MeV above thr.} & \sigma = 228 \pm 6 + 70 \text{ nb} \\ & \mathsf{E}_{\text{c.m.}} = 1.9 \text{ MeV above thr.} & \sigma = 141 \pm 12 + 42 \text{ nb} \end{split}$$

 $d + {}^{4}\mathcal{H}e \rightarrow {}^{6}\mathcal{H}e + \pi^{+}$

$$\begin{split} & \mathsf{E}_{\text{c.m.}} = 0.6 \text{ MeV above thr.} & \sigma = 22 \pm 1 \text{ nb} \\ & \mathsf{E}_{\text{c.m.}} = 1.2 \text{ MeV above thr.} & \sigma = 38 \pm 1 \text{ nb} \\ & \mathsf{E}_{\text{c.m.}} = 1.9 \text{ MeV above thr .} & \sigma = 57 \pm 1 \text{ nb} \end{split}$$

 ${}^{3}\mathcal{H}e + {}^{3}\mathcal{H}e -> {}^{6}\mathcal{L}i_{3.56} + \pi^{+}$

Aim: to measure the total cross sections at two beam energies- 261.1 and 262.5 MeV (1.2 and 1.9 MeV above the threshold in the center of mass for production of the 3.56 MeV state)

Experimental Set-up

 Performed in Uppsala at CELSIUS storage ring
 Used electron cooled beam of ³He
 Cluster-jet target of ³He. Known problem: The ³He target gas does not cluster well so we have to face the problem of an extended target

≻We detect ⁶Li

Zero-degree spectrometer

Telescope comprising of 4 detectors: two thin Si transmission detectors, a strip Ge detector and a forth detector made of Ge

Our Set - Up

Our Set - Up

The geometry

Experimental Set-up

Si1 0.91 mm thick *Si2* 0.29 mm *Ge* 2.30 mm

Experimental Set-up

Si1 0.91 mm thick *Si2* 0.29 mm *Ge* 2.30 mm

Strip detector : 1.70 mm thick 64 vertical and 16 horizontal strips

Target distribution

To investigate target distribution and to normalize the luminosity:

study the d+³He elastic scattering

- Deuteron beam energy: 140 MeV
- Known cross section: 16.3(1) mb/sr *M. Tanifuji et al. Phys. Rev. C 61 (1999) 024602*

Target distribution II

Beam energy 261.1 MeV, selection of events

10³

10²

DEE E_{beam} = 261.1 MeV Si1+Si2 [MeV] 05 09 04 04 Sum of all Y strips [MeV]

Beam energy 261.1 MeV, selection of events

Beam energy 262.5 MeV, selection of events

Kinetic energy spectra

Fit of the data for 261.1 MeV

Results

E _{beam} (MeV)	σ ^{tot} c.m. g.s(nb)	σ ^{tot} c.m. exc. state(nb)
261.1	347 ± 84 ± 42	104 ± 23 ± 12
262. 5	92 ± 84 ± 11	56 ± 35 ± 7

Results

E _{beam} (MeV)	σ ^{tot} c.m. g.s(nb)	σ ^{tot} _{c.m.} exc. state (nb)
261.1	347 ± 84 ± 42	104 ± 23 ± 12
262. 5	92 ± 84 ± 11	56 ± 35 ± 7

E _{beam} (MeV)	dσ/dΩ _{c.m.} g.s(nb/sr) 30 deg c.m.	dσ/dΩ _{c.m.} exc. state (nb/sr) 30 deg c.m.
282	24.0 ± 1.7	9.2 ± 2.7
268.5	16.0 ± 1.6	

Le Bornec et al. Phys. Rev. Lett. 47 (1981) 1870

Production cross sections of 3.56 MeV state in ⁶Li $d(^{4}\text{He}, {}^{6}\text{Li})\pi^{0}$ ³He(³He,⁶Li) π^+ **Coulomb corrected** (**nb**) (**nb**) $228 \pm 6 + 70$ Q = 1.2 MeV182 ± 40 ± 21 Q = 1.9 MeV88 ± 55 ± 11 141 ± 12 + 42

Summary

- A study of pionic fusion reaction ${}^{3}\text{He}({}^{3}\text{He},{}^{6}\text{Li})\pi^{+}$ was shown.
- Two previous investigations of the halo nuclei ⁶He and ⁶Li were discussed.
- Technical details of the experiment were explained.
- The process of the analysis was shown.
- Results were discussed.

Cross section of 3He(d,3He)d

Pionic fusion

epared Position for the Zero-Degree Spectrometer

Simulations

What are halo nuclei? contd.

