QCD and Effective Theories	General Considerations	Examples	Summary	Dense matter	Summary

Effective Theories for Hadrons at FAIR

Stefan Leupold

Nordic Winter Meeting on Physics @ FAIR, Björkliden, Sweden, March 2010

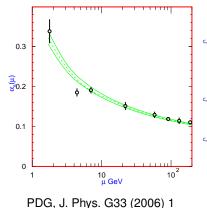
◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○○

QCD and Effective Theories	General Considerations	Examples 00000000	Summary o	Dense matter	Summary o
Table of Cont	ents				

- QCD and Effective Theories
- 2 General Considerations
- 3 Examples
 - Heavy-light sector
 - Light-quark sector
- 4 1. Summary
- 5 Cross connection to hot and dense matter

6 2. Summary

・ロト ・ 同ト ・ ヨト ・ ヨ


QCD and Effective Theories	General Considerations	Examples	Summary	Dense matter	Summary
000000					

Quantum chromodynamics

strong interaction described by Quantum ChromoDynamics

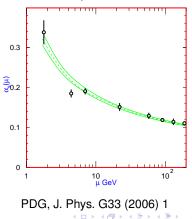
 $\mathcal{L} = \overline{\mathbf{q}} \gamma_{\mu} \left(\partial^{\mu} - i g \mathbf{A}^{\mu} \right) \mathbf{q} - \frac{1}{4} F^{\mu\nu}_{a} F^{a}_{\mu\nu}, \qquad F^{\mu\nu} \sim \left[\partial^{\mu} - i g \mathbf{A}^{\mu}, \partial^{\nu} - i g \mathbf{A}^{\nu} \right]$

with quarks q = (u, d, s, c, b, t) and gluons A_{μ}

- running coupling g
- → asymptotic freedom (caused by gluon self-interaction)
- → can use perturbation theory at large momenta
- → there one "sees" quarks and gluons (deep inelastic scattering, jet production)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ

QCD and Effective Theories	General Considerations	Examples	Summary	Dense matter	Summary
000000					


Quantum chromodynamics

strong interaction described by Quantum ChromoDynamics

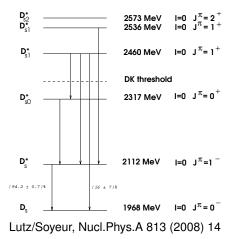
$$\mathcal{L} = \overline{\mathbf{q}} \gamma_{\mu} \left(\partial^{\mu} - i g \mathbf{A}^{\mu}
ight) \mathbf{q} - rac{1}{4} F^{\mu
u}_{a} F^{\mu
u}_{\mu
u}, \qquad F^{\mu
u} \sim [\partial^{\mu} - i g \mathbf{A}^{\mu}, \partial^{
u} - i g \mathbf{A}^{
u}]$$

with quarks q = (u, d, s, c, b, t) and gluons A_{μ}

- running coupling g
- → large coupling at small momenta
- - confinement
- → relevant degrees of freedom are hadrons, not quarks and gluons

QCD and Effective Theories

General Considerations


Examples

Summary o Dense matter

Summary o

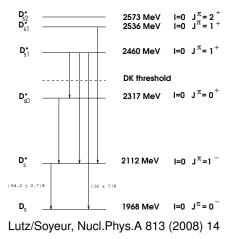
Hadron spectrum — an example

charmed strange mesons D_s

QCD and Effective Theories

General Considerations

Examples


Summary o

Dense matter

Summary 0

Hadron spectrum — an example

charmed strange mesons D_s

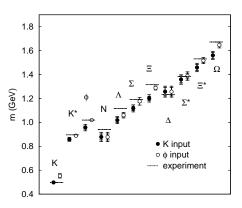
typical questions:

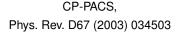
- Can we understand the masses?
- Are all these states just made out of *c*-quark and <u>s</u>-quark (quark model)?
- Is there admixture or even dominance of, e.g., cū us or cs+gluon or ...?

QCD and Effective Theories	General Considerations	Examples 00000000	Summary o	Dense matter	Summary O
More general	questions				

- Are all hadrons (dominantly) made out of quark-antiquark or three quarks, respectively (quark model)?
- Are there hadrons purely/dominantly made out of gluons?
- \hookrightarrow glueballs
 - Do some/many hadron have a hadronic substructure?
- ↔ "hadron molecules"

- How to understand masses, life times, reaction rates of hadrons?
- \hookrightarrow tools: lattice QCD, effective theories


・ロト ・ 同ト ・ ヨト ・ ヨ


QCD and Effective Theories	General Considerations	Examples 00000000	Summary o	Dense matter	Summary O
Lattice QCD					

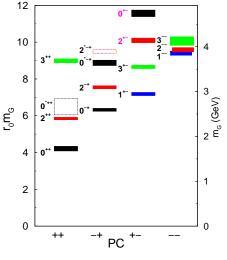
- one way to tackle (part of) questions: solve QCD on a grid
- \hookrightarrow reasonable results \longrightarrow

but:

- yields only spectrum, not life time, reaction rates
- only for low-lying states
- numerically expensive to treat light quark masses
- → complementary:
 effective field theories

イロト イポト イヨト イヨト

QCD and Effective Theories


General Considerations

Examples 00000000

Summary o Dense matter

Summary o

Prediction: glueball spectrum from lattice QCD

Morningstar/Peardon, Phys. Rev. D60 (1999) 034509

- lattice QCD predicts existence of glueballs
- → experimental verification desired!
- glueballs might mix with ordinary hadrons
- → so far not settled in lattice
 QCD

イロト イポト イヨト イヨト

→ complementary: effective field theories

QCD and Effective Theories ○○○○○○●	General Considerations	Examples 00000000	Summary o	Dense matter	Summary o
Effective theo	ries				

QCD and Effective Theories	General Considerations	Examples 00000000	Summary o	Dense matter	Summary O
Effective theo	ries				

 simple example: want to describe motion of rocket (or snow mobile:-)

イロト 不得 トイヨト イヨト

QCD and Effective Theories ○○○○○○●	General Considerations	Examples 00000000	Summary o	Dense matter	Summary O
Effective theo	ries				

 simple example: want to describe motion of rocket (or snow mobile:-)

イロト イポト イヨト イヨト

QCD and Effective Theories	General Considerations	Examples 00000000	Summary o	Dense matter	Summary O
Effective theo	ries				

 simple example: want to describe motion of rocket (or snow mobile:-)

- simplest effective theory: treat rocket as point-like object
- refined effective theory: take tensor of inertia into account
- \hookrightarrow isolate relevant degrees of freedom

Image: Image:

Conorol cono	idarationa				
QCD and Effective Theories	General Considerations ●○○	Examples 00000000	Summary O	Dense matter	Summary o

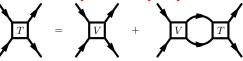
General considerations

• resonances decay into other "final-state" hadrons

- → influence of final-state hadrons and their interactions on resonance properties?
 - examples for extreme cases:
 - resonance is dominantly quark-antiquark or glueball, coupling to final-state hadrons "perturbative"
 - resonance is formed by attractive interaction between hadrons

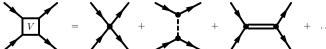
 \rightsquigarrow hadron molecule

 → need sophisticated approach for description of final-state hadrons and their interactions



・ロット (雪) (日) (日)

Effective theories for hadrons


systematic approach instead of arbitrary model building

- \hookrightarrow principles of scattering theory and effective field theory:
 - exact unitarity and analyticity, rescattering

coupled-channel dynamics

systematic power counting

 need extension of chiral perturbation theory to include (at least) vector mesons and Delta decuplet currently developed, e.g. Lutz/Leupold, Nucl. Phys. A 813, 96 (2008)
 goal: disentangle hadronic rescattering effects from "elementary" resonances (quark-antiquark, glueballs)

QCD and Effective Theories	General Considerations ○○●	Examples 00000000	Summary o	Dense matter	Summary O
Symmetries o	of QCD				

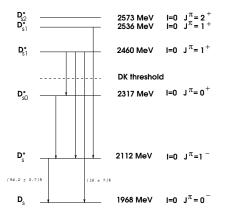
connection to underlying QCD: symmetries!

- chiral symmetry: light quarks *u*, *d*, *s* have masses much lighter than typical hadron masses
- \hookrightarrow approximately massless
- \hookrightarrow QCD treats left- and right-handed quarks in same way
- \hookrightarrow chiral symmetry, spontaneously broken
 - heavy-quark symmetry: for very heavy quark spin flip does not cost energy
- \hookrightarrow (approximate) degeneracy e.g. of $J^P = 0^-$ and 1^- or of 0^+ and 1^+ ...
- → expected to work very well for bottom quark, approximate for charm quark

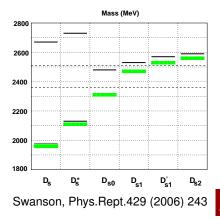
QCD and Effective Theories

General Considerations

Examples

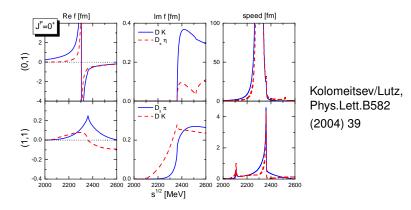

Summary o

Dense matter


Summary 0

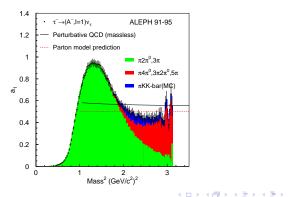
Example 1: new D_s mesons

charmed strange mesons Ds


Lutz/Soyeur, Nucl.Phys.A 813 (2008) 14 standard quark model fails for $D_s(2317)0^+$ (found by BABAR)

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ へ ○

 $D_s 0^+$ can be understood as dynamically generated — coupled-channel meson molecule from scattering of Goldstone bosons on $D_{(s)} 0^-$



Example 2: long known a_1 -meson

study decay: $\tau \rightarrow \nu_{\tau} + 3\pi$:

- experimental finding (Dalitz plots): isovector–axial-vector current couples to π-ρ
- π - ρ system subject to final-state interactions (rescattering)
- experimental finding: resonant structure at \approx 1250 MeV

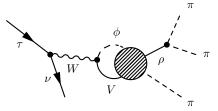
0000000 000 000 0000 0 0000 0	QCD and Effective Theories	General Considerations	Examples	Summary	Dense matter	Summary
			00000000			

Example 2: long known *a*₁-meson

- experimental finding (Dalitz plots): isovector–axial-vector current couples to π-ρ
- π - ρ system subject to final-state interactions (rescattering)
- experimental finding: resonant structure at \approx 1250 MeV
- $\rightsquigarrow\,$ study two scenarios:
 - 1. only final-state interaction between π - ρ

(cf. Lutz/Kolomeitsev, Nucl. Phys. A 730, 392 (2004); Roca/Oset/Singh, Phys. Rev. D 72, 014002 (2005))

- 2. include in addition preformed resonance (quark-antiquark)
- describe final-state interactions via Bethe-Salpeter eq., kernel from lowest-order chiral interaction (Weinberg-Tomozawa – WT)
 → parameter free



・ロット (雪)・ (日)・ (日)・

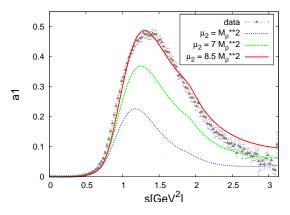
QCD and Effective Theories	General Considerations	Examples	Summary	Dense matter	Summary
		00000000			

Scenario 1: only final-state interaction

• one free parameter for transition from W to hadrons

 Bethe-Salpeter equation (rescattering, final-state interaction)

$$T = K + K T = K = K$$

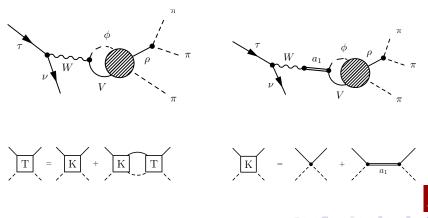

• N.B: coupled-channel treatment $(\phi, V) = (\pi, \rho), (K, K^*)$

(日)

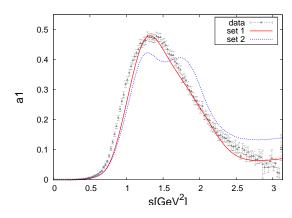
QCD and Effective Theories	General Considerations	Examples 00000000		Dense matter	Summary o			

au decay in scenario 1

- reasonable description with one free parameter
- → indicates that a_1 is ρ - π "molecule" (Markus Wagner and S.L., Phys. Rev. D 78, 053001 (2008))



QCD and Effective Theories	General Considerations	Examples 00000000	Summary o	Dense matter	Summary O


Scenario 2: in addition elementary resonance

additional parameters:

resonance parameters: mass and couplings to ρ - π and W

τ decay in sc	000	0000000		0000	
QCD and Effective Theories	General Considerations	Examples	Summary	Dense matter	Summary

- try to minimize WT, but still typically double-peak structure
- → only with unnatural fine tuning one gets one peak (Markus Wagner and S.L., Phys. Rev. D 78, 053001 (2008))

QCD and Effective Theories	General Considerations	Examples 00000000	Summary •	Dense matter	Summary o
1. Summary					

challenging and promising future of hadron-structure physics:

- high-precision experiments
- sharpening of theoretical tools (lattice, effective theories)
 - inclusion of symmetries of QCD
 - develop systematic power counting
- \hookrightarrow have shown some examples beyond quark model
- \hookrightarrow expect more

3

・ロット (雪) (日) (日)

Cross conner	tion to CPM					
QCD and Effective Theories	General Considerations	Examples	Summary o	Dense matter •000	Summary o	

- hadron physics/PANDA: how is energy distributed? (for given quantum numbers)
- → spectral information (peaks indicate particles)
 - in-medium physics/CBM(+HADES): how many?
- \hookrightarrow statistical information

(time dependent phase-space distribution)

- $\rightsquigarrow\,$ in general difficult to disentangle
- \hookrightarrow example: dilepton production
 - information from all times of fireball expansion, not just freezeout
 - information on in-medium modifications of hadrons

・ロト ・ 理 ト ・ ヨ ト ・ ヨ

QCD and Effective Theories	General Considerations	Examples 00000000	Summary o	Dense matter ○●○○	Summary o		
CERES — dielectrons							

how distributed and how many?

CERES, PLB 666 (2008) 425 [arXiv:nucl-ex/0611022] possible explanations

• more $\omega \rightarrow \pi e^+ e^-$?

∽ no

• broader (and more) $\rho \rightarrow e^+e^-$?

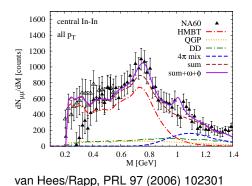
 \hookrightarrow yes(?)

• additional sources $N^* \rightarrow N e^+ e^-$?

イロト イポト イヨト イヨト 三日

 \hookrightarrow yes(?)

QCD and Effective Theories


General Considerations

Examples S

Summary o Dense matter ○○●○ Summary o

NA60 — dimuons (and one theoretical description)

how distributed and how many?

[arXiv:hep-ph/0603084]

still under debate:

- decomposition of radiating source
- in-medium properties of *ρ* meson

QCD and Effective Theories	General Considerations	Examples 00000000	Summary o	Dense matter 000●	Summary o
Microscopic ir	nformation				
$\begin{array}{c} \pi & \rho & \gamma \\ & & & \\ \pi & & & \\ \end{array} \qquad \qquad$			π π π	¢' γ	
π +	$\pi \to \rho \to \ell^+ \ell^-$	4π	$\overline{\rho} \to \rho' \to 0$	$\ell^+\ell^-$	
$\pi + N \rightarrow 0$	$N^* \rightarrow \ell^+ \ell^- + N$	3π	$a \rightarrow a_1 \rightarrow $	$\ell^+\ell^- + \pi$	
$\sim \frac{\pi}{N^*}$	γ ν ℓ ⁺ ν ν ℓ ⁺	π π π			

QCD and Effective Theories	General Considerations	Examples 00000000	Summary o	Dense matter	Summary •
2. Summary					

for description of nucleus-nucleus collisions:

- single-particle spectra require statistical information (often thermal)
- two-particle spectra require in addition spectral information
- \hookrightarrow microscopic/hadronic information needed
- and microscopic/hadronic information extractable

・ロト ・ 同ト ・ ヨト ・ ヨ

QCD and Effective Theories	General Considerations	Examples 00000000	Summary o	Dense matter	Summary •
2. Summary					

for description of nucleus-nucleus collisions:

- single-particle spectra require statistical information (often thermal)
- two-particle spectra require in addition spectral information
- \hookrightarrow microscopic/hadronic information needed
- and microscopic/hadronic information extractable
 - \hookrightarrow PANDA physics meets CBM physics
 - vector mesons in coupled channels ↔ dilepton production
 - properties of charm states ↔ charm production

Many thanks to my collaborators Markus Wagner and Matthias Lutz

(日) (四) (日) (日) (日)