# The FAIR Storage Ring Complex

to deliver intense high-quality secondary beams for experiments



Nordic FAIR Meeting, 21-26 March 2010, Björkliden, Sweden

#### Motivation: Interaction of secondary ion beams (pbars, rare isotopes, heavy HCI) with matter

- high intensity dense quasi-monoenergetic beams
- dense localised targets
- > optimal beam-target overlap in space & time
- > good ion beam lifetime  $\rightarrow$  UHV
- variation & control of beam energy (spread)
- Well-defined charge states, heavy HCI, rare isotopes, antiprotons, exotic beams
- $\rightarrow$  high energy accelerator complex

### **The FAIR Accelerator Complex**

**Great Variety of Experimental Requirements & Possibilities** 



## **Intensities of Primary Beams**

| Heavy lons      |                                       |                                                              |                           | Protons            |
|-----------------|---------------------------------------|--------------------------------------------------------------|---------------------------|--------------------|
|                 | SIS18<br>today                        | upgraded SIS18<br>as SIS100 injector                         | SIS100                    | SIS100             |
| Reference ion   | U <sup>28+</sup> /U <sup>73+</sup>    | U <sup>28+</sup>                                             | U <sup>28+</sup>          | protons            |
| Max. energy     | 0.2 / 1 GeV/u                         | 0.2 GeV/u                                                    | 2.7 GeV/u                 | 29 GeV             |
| Max. intensity  | 5x10 <sup>9</sup> / 3x10 <sup>9</sup> | 1.5x10 <sup>11</sup> x 4       (2x10 <sup>10</sup> achieved) | <b>5x10</b> <sup>11</sup> | 2x10 <sup>13</sup> |
| Repetition rate | 0.3 Hz                                | 2.7 Hz<br>(not vet available)                                | 0.7 Hz                    | 0.1 (0.2) Hz       |
| Bunch length    | > 100 ns                              |                                                              | 60 ns                     | < 50 ns            |
|                 |                                       |                                                              |                           |                    |

#### goal: fill SIS18 up to the space charge limit

#### **Technical Challenges:**

control of intense beams: dynamic vacuum, space charge effects, instabilities
 fast ramping superconducting magnets, complex RF manipulations
 parallel operation of several beams

#### **The Rare Ion Beam Separator Super FRS**





#### Rate after target for 10<sup>12</sup>/s primary ions

K.H. Schmidt et al.

## **The Antiproton Target and Separator**



according to tracking calculations about 70 % of the produced antiprotons with  $\Delta p/p \le 3\%$  will be stored in the CR

Vacuum chamber

**Transverse** 

#### Ideal tool for secondary beams : Storage ring with beam cooling





Secondary beams emerge from targets at low abundancies & occupy a very large phase space (sizes, angles, energy spread)

BEAM COOLING TECHNIQUES ≻Increase phase space density

Accumulation of low-abundant ion species

Compensate diffusion (phase space growth) during deceleration

Counteract beam heating effectsi.e. in an internal target

high-quality beams for high-luminosity, precision experiments !



### **Electron cooling: Practice**



CRYRING, Stockholm, 2003



CELSIUS, Uppsala, 2008 (last photo ☺)

### **Stochastic cooling: Principle**



## **The FAIR Storage Rings**



## **The Collector Ring CR**



 $\begin{array}{ll} \mbox{circumference} & 216 \mbox{ m} \\ \mbox{magnetic bending power} & 13 \mbox{ Tm} \\ \mbox{large acceptance } \epsilon_{x,y} = 240 \mbox{ (200) mm mrad} \\ & \Delta p/p = \pm 3.0 \mbox{ (1.5) }\% \end{array}$ 

#### fast stochastic cooling (1-2 GHz) of antiprotons (10 s) and rare isotope beams (1.5 s)

fast bunch rotation at h=1 with rf voltage 200 kV adiabatic debunching optimized ring lattice for proper mixing large acceptance magnet system

#### **NUSTAR-ILIMA Experiments:** isochronous mass measurements of RIBs

option: upgrade of rf system to 400 kV and stochastic cooling to 1-4 GHz,  $\rightarrow$  cooling times reduced by factor 2

## **CR Stochastic Cooling (Practice)**

#### Fast Stochastic Pre-cooling: matched to velocities $\beta = 0.83 - 0.97$

#### system band width 1-2 GHz rf power ~ 1-2 kW per system





vacuum tank with actuators for electrode movement including cold heads (20 K) and cooled pre-amplifiers (option)

#### Installed in the vacuum tank: electrodes (and pre-amplifiers) can be cooled to 20 K

## **The Antiproton Accumulator Ring RESR**



| circumference                        | 240 m                 |
|--------------------------------------|-----------------------|
| magnetic bending power               | 13 Tm                 |
| tunes Q <sub>x</sub> /Q <sub>v</sub> | 3.12/4.11             |
| momentum acceptance                  | ±1.0 %                |
| transverse accept. h/v               | 25×10 <sup>-6</sup> m |
| transition energy                    | 3.3-6.4               |

accumulation of antiprotons by a combination of RF and stochastic cooling

max. accumulation rate 3.5 (7)×10<sup>10</sup>/h max. stack intensity ~ 1  $10^{11}$ 

additional mode: fast deceleration of RIBs (antiprotons) to a minimum energy of 100 MeV/u for injection into NESR (ER) for collider mode experiments

#### Antiproton Accumulation in RESR RF Manipulation & Stochastic Cooling



## **Accumulation System for RESR**

#### Longitudinal stochastic cooling system: tail and core cooling

![](_page_16_Figure_2.jpeg)

# The High Energy Storage Ring HESR

**HESR Consortium:** FZJ, GSI, (TSL)

![](_page_17_Figure_2.jpeg)

### **The New Experimental Storage Ring NESR**

![](_page_18_Figure_1.jpeg)

Storage & electron cooling of ions & pbars

- Injection: ions at 740 MeV/u, pbars at 3 GeV
- Fast deceleration of ions to 4 MeV/u

and antiprotons to 30 MeV

Longitudinal accumulation of RIBs

- Internal target experiments
- Electron target (2nd electron cooler)
- Laser interactions (cooling, spectroscopy)
- Electron-lon collisions (bypass mode)
- Antiproton-ion collisions (bypass mode)
- Fast extraction (1 turn)
- Slow (resonance) extraction
- Ultra-slow (charge-exchange) extraction

### Design aspects from BINP: The bypass collision section for ELISe & AIC

![](_page_19_Figure_1.jpeg)

#### Longitudinal Accumulation of RIBs in NESR RF Manipulation & Electron Cooling

Basic idea: confine with RF stored beam to a fraction of the circumference, inject into gap & apply strong electron cooling to merge the two beam components

 $\Rightarrow$  fast increase of intensity (for low intensity RIBs)

![](_page_20_Figure_3.jpeg)

Goal: Fast increase of the intensity of RIBs for internal experiments e.g. ELISe

# **Proof of Principle in the ESR**

![](_page_21_Figure_1.jpeg)

### **Electron Cooling in the NESR**

#### design by BINP, Novosibirsk

![](_page_22_Figure_2.jpeg)

| Cooler Parameters             |                                 |  |  |  |
|-------------------------------|---------------------------------|--|--|--|
| energy                        | 2 - 450 keV                     |  |  |  |
| max. current                  | 2 A                             |  |  |  |
| cathode radius                | 1 cm                            |  |  |  |
| beam radius                   | 0.5-1.4 cm                      |  |  |  |
| magnetic field                |                                 |  |  |  |
| gun                           | up to 0.4 T                     |  |  |  |
| cool. sect.                   | up to 0.2 T                     |  |  |  |
| straightness                  | ≤ <b>2</b> 10 <sup>-5</sup>     |  |  |  |
| adiabatic expansion option    |                                 |  |  |  |
| cool. section length 5 m      |                                 |  |  |  |
| max. power in collector 15 kW |                                 |  |  |  |
| vacuum                        | ≤ <b>10</b> <sup>-11</sup> mbar |  |  |  |

#### In the cooling section: 2 main competing processes

Cooling rate

![](_page_22_Figure_6.jpeg)

![](_page_22_Figure_7.jpeg)

IBS heating rate

$$\frac{1}{\tau_{\rm IBS}} \propto \frac{q^4}{A^2} \cdot \frac{N_{\rm i}}{\beta^3 \gamma^4 \epsilon_{\rm H} \epsilon_{\rm V} \left(\Delta p/p\right)}$$

### **Electron Cooling in the NESR**

**Injected beam quality defines operation parameters of the cooler !** 

![](_page_23_Figure_2.jpeg)

#### Beam parameters for experimentalists

Beam size at location of detector/experiment:

$$2\sigma_{H} = \sqrt{\beta_{H} \varepsilon_{H}} + D \frac{\Delta p}{p}$$

$$2\sigma_V = \sqrt{\beta_V \varepsilon_V}$$

Rev. frequency ↔ Momentum ↔ Kinetic energy spread:

## **The FAIR Storage Rings**

![](_page_25_Figure_1.jpeg)

## **The FAIR Storage Rings**

![](_page_26_Figure_1.jpeg)

Modularised Start Version (0-3)

Technically feasible, upgradeable concept

- CR design (very advanced) remains; Rearrangement of components & topology to extract from CR to the HESR
- Longitudinal pbar accumulation in the HESR (with barrier bucket RF and stochastic cooling); simulations and tests in the ESR underway!
- PANDA at reduced intensity & duty cycle, first measurements at high-resolution mode
  NUSTAR/ILIMA in the CR

Later: Modules 4,5,6 → PHYSICS !
•NUSTAR & APPA physics program in NESR & ER
•NESR decelerates beams for FLAIR
•RESR increases pbar rate for high-luminosity at PANDA

### **Isochronous Mass Spectrometry in CR**

![](_page_27_Figure_1.jpeg)

# **Conclusions & Outlook**

- Storage ring complex: versatile operation with RIBs & pbars, pertinent technical systems, "entangled" with experiments
- Storage ring concept & design well advanced, civil construction planning underway
- Operation modes for in-ring experiments and extraction: investigated and feasible
- Beam parameters available for users
- FAIR: not a dedicated but a competitive facility with high and low energy antiprotons
- Within FAIR Modules 0-3: viable pbar chain (CR+HESR)