Precision Laser Spectroscopy of Light Exotic Nuclei

W. Nörtershäuser

Universität Mainz & GSI Helmholtzzentrum für Schwerionenforschung

> JG U JOHANNES GUTENBERG UNIVERSITÄT MAINZ

http://www.kernchemie.uni-mainz.de/laser/

- Introduction and Motivation
- General Approach
- Lithium

Resonance Ionization Mass Spectroscopy Charge Radii - Results and Interpretation Absolute Charge Radii from Optical Measurements ?

• Helium

Single-Atom Spectroscopy in a Magneto-Optical Trap

• Beryllium

Frequency-Comb Based Collinear Laser Spectroscopy Nuclear Charge Radii

• Open Questions and Outlook

Optical Spectroscopy in the Nuclear Chart Principle

Hyperfine Structure:

H.-J. Kluge and W. Nörtershäuser, Spectrochim. Acta B, 58 (2003) http://www.gsi.de/forschung/ap/projects/laser/survey.html

Motivation

(a) Exotic Structure of Halo Nuclei Model-Independent Approach to the Core Size in Halo Nuclei

(b) Validating ab-initio Nuclear Structure Calculations Benchmarks for Nuclear Structure Calculations based on Nucleon-Nucleon and Three-Nucleon Potentials (Greens-Function Monte Carlo, No-Core Shell Modell, Fermionic Molecular Dynamics)

Isotope Shift

Charge Radii from Isotope Shifts

Development of Mass Shift Calculations

Isotop	e [Yan 03]	[PuchO6]	[Yan 08]	[PuchO8]
⁶ Li	11 453.010 (56)	- 11 452.822 (2) (0)	-11 452.821 (2)	-11 452.8205 (23)(2)
⁸ Li	8 635.113 (42)	8 634.990 (1) (1)	8 634.980 (2)	8 634.9812 (17)(9)
⁹ Li	15 332.025 (75)	15 331.797 (3)(13)	15 331.799 (3)	15 331.7995 (31)(12)
¹¹ Li	25 101.812 (123)	25 101.473 (9)(21)	25 101.470 (5)	25 101.5028 (64)(27)

$$C = \frac{2\pi}{3} Z \alpha^4 \left\langle \sum_a \delta^{(3)}(r_a) \right\rangle \left[1 - (Z\alpha)^2 \ln(Z\alpha m r_{\rm ch}) \right]$$

Isotope	[Puch08]
⁶ Li	-1.5719 (16)
⁸ Li	-1.5720 (16)
⁹ Li	-1.5721 (16)
¹¹ Li	-1.5768 (17)

Year	M(¹¹ Li) amu	Δ (δν ^{6,11}) kHz	Ref
2000	11.043 796 (29)	0	AME2003
2006	11.043 715 7 (54)	-329	MISTRAL
2008	11.043 723 61 (69)	-295	TITAN

Case 1: Lithium

Li: Experimental Technique

¹¹Li - Spectrum

Change in the RMS Charge Radius

W. Nörtershäuser, P. Müller, PhiuZ 40, 96 (2009)

Geometrical Relation of CM-Motion:

$$\begin{bmatrix} r_c ({}^{11}\text{Li}) \end{bmatrix}^2 = \begin{bmatrix} r_c ({}^{9}\text{Li}) \end{bmatrix}^2 + R_{c-CM}^2$$
$$\implies R_{c-CM}^2 = \begin{bmatrix} r_c ({}^{11}\text{Li}) \end{bmatrix}^2 - \begin{bmatrix} r_c ({}^{9}\text{Li}) \end{bmatrix}^2 = \delta \langle r^2 \rangle^{9,11}$$

Center-of-mass motion

$$r_{c}(^{11}\text{Li}) = \sqrt{[R_{C-CM}]^{2} + [r_{c}(^{9}\text{Li})]^{2}}$$

Charge Radius of ⁹Li has to be known in Advance in order to calculate the Charge Radius of ¹¹Li.

Effect on Nuclear Charge Radii

[30] T. Nakamura et al., Phys. Rev. Lett. 96 (2006) 252502

Nuclear Charge Radii - Comparison with Theory

Electromagnetic Moments of Li in the NCSM

Charge Radius and Dipole Response

PHYSICAL REVIEW C 76, 024302 (2007)

Charge radius and dipole response of ¹¹Li

H. Esbensen,¹ K. Hagino,² P. Mueller,¹ and H. Sagawa³ ¹Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA ²Department of Physics, Tohoku University, Sendai 980-8578, Japan ³Center for Mathematical Sciences, University of Aizu, Aizu-Wakamatsu, Fukushima 965-8560, Japan (Received 27 April 2007; published 1 August 2007)

$$\delta \langle r_{\rm ch}^2 \rangle = \langle r_{\rm ch}^2(Z, A) \rangle - \langle r_{\rm ch}^2(Z, A - 2) \rangle$$
$$= \left(\frac{2}{A}\right)^2 \langle r_{c,2n}^2 \rangle - \frac{0.232}{Z} + \langle r^2 \rangle_{2n}^{\rm so}$$

$$\langle r_m^2(Z, A) \rangle = \frac{A-2}{A} \langle r_m^2(Z, A-2) \rangle$$

 $+ \frac{2(A-2)}{A^2} \langle r_{c,2n}^2 \rangle + \frac{1}{2A} \langle r_{n,n}^2 \rangle$

R_m (⁹Li) = 2.43(2) fm R_m (¹¹Li) = 3.27(24) fm I. Tanihata *et al.*, *PRL* 55, 2676 (1985).

R_m (¹¹Li) = 3.55(10) fm J.S. Al-Khalili and J.A. Tostevin, *PRL* 76, 3903 (1996).

R_m (¹¹Li) = 3.42(11) fm A.V. Dobrovolsky *et al.*, *Nucl. Phys. A* **766**, 1 (2006).

Component	Percentage (%)	Shu
$s_{1/2}, s_{1/2}$	36.8	Nuc 175
$p_{1/2}, p_{1/2}$	46.8	
$P_{3/2}, P_{3/2}$	9.9	
$s_{1/2}, d_{3/2}, 5/2$	3.7	
$p_{1/2}, p_{3/2}$	2.8	
$J_{\text{halo}} = 0$	93.4	
$J_{\text{halo}} = 1, 2$	6.6	

Shulgina *et al*., Nucl. Phys. A **825**, 75 (2009).

Case 2: Helium

LABORATOIRE COMMUN DSM/CEA-IN2P3/CNRS

Atomic Energy Levels of Helium

He discharge

He energy level diagram

Spectroscopy from metastable state populated by discharge

Courtesy of P. Mueller 27

Atom Trapping of ⁶He & ⁸He at GANIL

Switch & Scan

Power balance between the two opposing probe beams

Helium Resonances

Courtesy of P. Mueller 30

⁶He & ⁸He RMS Point Proton and Matter Radii

Courtesy of P. Mueller 32

The Next Step: Z=4 Beryllium

Ewald, Sánchez, Nörtershäuser *et al.* 2004, 2006 Wang, Müller *et al.* 2005, 2007 Atomic Structure Calculations ($N_{e^{-1}} \leq 3$) $\rightarrow Be^{+}$

Collinear Laser Spectroscopy The Principle

Collinear Laser Spectroscopy

The Principle

Collinear Laser Spectroscopy

The Principle

Collinear Laser Spectroscopy

The Principle

 S.L. Kaufman, Opt. Comm. 17 (1976) 309.
 K.-R. Anton, PRL 40 (1978) 642

 T. Meier et al., Opt. Comm. 20 (1977) 397
 E.W. Otten, Nuclear Radii and Moments of unstable Isotopes (1989)

Doppler-tuning :

$$v_{0} = v_{L} \frac{1-\beta}{\sqrt{1-\beta^{2}}} = v_{L} \gamma (1-\beta)$$
$$\beta = v/c = \sqrt{2eU/m}$$

Doppler width 20-40 MHz

Limitations for Light Elements

The Solution

Production of Be Isotopes

Experimental Setup

Anticollinear

Results: Absolute Transition Frequencies

isotope	absolute frequency v_0	Δv_0
Be	GHz	MHz
7	957150,31638	1,68
9	957199,55326	1,54
10	957216,87706	2,05
11	957231,11826	1,41

<u>Δν₀ includes:</u>

statistical standard deviation

- + laser-ion beam misalignment ~ 500 kHz
- + rubidium clock uncertainty ~ 580 kHz
- + ion recoil correction
- ~ 900 kHz

Laser

SDHERe

Beryllium: Nuclear Charge Radii

Electron Scattering: $r_c({}^{9}Be) = 2.519(12) \text{ fm}$, J.A. Jansen et al., Nucl.Phys.A **188**, 337 (1972). Muonic Atoms: $r_c({}^{9}Be) = 2.39(17) \text{ fm}$, L.A. Schaller, Nucl.Phys.A **343**, 333 (1980).

43

Beryllium: Nuclear Charge Radii

Electron Scattering: $r_c({}^{9}Be) = 2.519(12) \text{ fm}$, J.A. Jansen et al., Nucl.Phys.A **188**, 337 (1972). Muonic Atoms: $r_c({}^{9}Be) = 2.39(17) \text{ fm}$, L.A. Schaller, Nucl.Phys.A **343**, 333 (1980).

W. Nörtershäuser et al., PRL 102, 062503 (2009).

Beryllium Spectra in the D2 Transition

Charge Radii of Beryllium Isotopes

Berylium Charge Radii in FMD Calculations

Summary

- High-Accuarcy Isotope Shift Measurements and Atomic Structure Calculations are an excellent Tool to Determine Nuclear Charge Radii.
- Currently this Technique is limited to Systems with up to three electrons.
- Charge Radii of Helium (^{3,4,6,8}He), Lithium (^{6,7,8,9,11}Li), and Beryllium Isotopes (^{7,9,10,11}Be) are measured.
- Theory should reproduce as many Observables as possible simultaneously.

Absolute Charge Radii (Lithium, Beryllium)

- improved electron scattering data
- improved atomic structure calculations

Details of the Nuclear Structure:

- Wave Function
- Amount of Core Polarization

How to proceed for heavier (light) elements?

Near Future: Measurement of ¹²Be (~ 2000 Ions/s)

Trends and Developments

TRIGA-SPEC = TRIGA-TRAP + TRIGA-LASER

Prototyping MATS and LASPEC

The LASPEC Community (+ Friends) work continously to advance and improve laser spectroscopy, and gain new territory ...

Cooled and bunched beams MOT Spectroscopy of Short-Lived Nuclei State Preparation in a Cooler and Buncher Frequency-Comb-Based Spectroscopy &-Asymmetrie Detection for Isotope Shifts Superheavy Element Spectroscopy with Pulsed RIMS

G 5 11 🧖

¹¹Li at ISAC, October 2004

GUTE

D. Albers, B.A. Bushaw, J. Behr, P. Bricault,
A. Dax, J. Dilling, M. Dombsky, G.W.F. Drake,
G. Ewald, S. Götte, R. Kirchner, H.-J. Kluge, Th. Kühl, J. Lassen, P. Levi, M. Pearson, E. Prime, V. Ryjkov, R. Sánchez,
A. Wojtaszek, Z.-C. Yan, C. Zimmermann

Funding:

Laser Spectroscopy of Highly Charged Ions and Exotic Radioactive Nuclei (VH-NG-148 Helmholtz Young Investigators Group)

HELMHOLTZ

GEMEINSCHAFT

Institut für Kernchemie

an der Universität Mainz

¹¹Be at COLLAPS, June 2007

BeTINa

M. Zakova, D. Tiedemann,, Z.Andjelkovich,
K. Blaum, M. Bissell, R. Cazan, G.W.F. Drake,
Ch. Geppert, M. Kowalska, J. Krämer,
A. Krieger, R. Neugart, R. Sanchez,
B. F. Schmidt-Kaler, Z.-C. Yan, D. Yordanov,
C. Zimmermann

Bundesministerium für Bildung und Forschung