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The JYFL Fidipro team

FiDiPro = Finnish Distinguished Professor program

Jacek Dobaczewski is since 2007 the Fidipro professor at JYFL

Fidipro group of JYFL is funded by the university and by
Finnish Academy of Sciences

The group has currently 8 members, all nuclear theorists

Goal = Improve the accuracy and predictive power of nuclear energy
density functionals.



The JYFL Fidipro team



Need for efficient QRPA solvers

RPA = Random Phase Approximation
DFT = Density Functional Theory
EDF = Energy Density Functional

QRPA is needed to calculate transition amplitudes (beta, EM)
across the nuclear chart.

RPA can provide approximate nuclear correlation energies.
(important for EDF fits).



Linear response theory and RPA

We describe nuclei using density functional theory.

Hohenberg-Kohn theorem: If you know the exact
exchange-correlation functional, you can describe all static
nuclear properties using just the density

Runge-Gross theorem: Time-dependent generalization of the
Hohenberg-Kohn theorem.

→ TD-DFT methods can be used to gain information from
nuclear excited states

The small amplitude limit of time-dependent Kohn-Sham
equations of Adiabatic TD-DFT has RPA form.

→ RPA limit is the simplest and most natural way to get
information of excited states when we work in the density
functional formalism.

The goal is to make accurate and well converged QRPA calculations
across the nuclear chart, using existing and improved Skyrme
functionals.



RPA as the small ampltide limit of TDHFB

TDHFB equation for the generalized density matrix R:

i~
∂R

∂t
= [H,R] + F(t) (1)

gives us RPA-like equations after we set

R(t) = R0 + R̃e−iωt + R̃†eiωt (2)

and linearize the commutator equation in R̃. The most used RPA
variants are

Particle-hole RPA

pp-nnQRPA: Double-even ground state, double-even excitations

pnQRPA: Double-even ground state, double-odd excitations



Large-scale QRPA calculations

The RPA-type eigen equation
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has two problems with heavy deformed nuclei:

RPA matrix has large dimension and is dense, construction takes
time

Full diagonalization of large dense RPA matrix takes lots of
time. Scaling of diagonalization time is (dimension)3 = N18

0 ,
where N0 is the number of harmonic oscillator major shells used.

We need typically about 14 major shells of oscillator orbits to
describe deformed heavy nuclei well enough.



Large-scale QRPA calculations

The dimensionality of QRPA explodes if deformation is allowed:
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Large-scale QRPA calculations

Recent traditional state of the art QRPA calculations:

J. Terasaki et al. (PRC71, 034310 (2005)): Traditional QRPA
for spherical nuclei. Very large RPA dimensions, up to 40000.
Calculation time was very long for each multipole (spin and
parity) of each nucleus.

C. Losa et al. (arXiv:1002.4351, submitted to PRC, thesis work):
Traditional QRPA for axially deformed nuclei. Only small basis
used, to have manageable QRPA dimensions.



Solution: Iterative diagonalization

Use non-hermitian Lanczos or Arnoldi method, do not make a
full diagonalization.

Anyway, we are not interested to know every QRPA mode
exactly, only strength functions or lowest modes!
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Iterative methods only need to know the result of QRPA matrix -
vector products.



Modified Finite Amplitude method (FAM)

FAM by Nakatsukasa et al. (PRC80, 044301).

We do not have to construct the QRPA matrix at all, use time
reversal non-invariant mean fields instead.

Transition densities in space

Fields (using Skyrme coupling constants and linearized)

Matrix elements of fields

Result of QRPA matrix−vector product {W, W’}

QRPA amplitudes {X, Y}



What kind of iterative diagonalization?

Non-hermitian Arnoldi method is better than Lanczos.

The QRPA matrix - vector products need to be stabilized.
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The best iterative diagonalization

The Arnoldi procedure:
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Ỹk+1∗

X̃ k+1∗

)

= −

(

Wk
−

W ′
−

k

)

+

k
∑

i=1

(

X i

Yi

)

b′∗ik −

k
∑

i=1

(

Yi∗

X i∗

)

a′∗
ik ,

(8)



Spurious modes in RPA

For each broken symmetry of the mean field RPA
decouples a spurious mode from the physical modes.

In iterative diagonalization the RPA modes are constructed
orthogonal to the spurious modes.
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Arnoldi + stabilization, J
π = 0+
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Arnoldi + stabilization, J
π = 0+
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Arnoldi + stabilization, J
π = 2+
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Arnoldi + stabilization, J
π = 1−
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The code HOSPHE



The code HOSPHE-RPA



The code HOSPHE-RPA

HOSPHE-RPA with N3LO extended Skyrme functional (See first
paper at arXiv0912.3234v1, accepted to PRC)

Ground state and RPA calculations are consistent → no RPA
collapse!

Uses Arnoldi method to solve the RPA equations approximately.

Orthogonalizes the physical modes against spurious RPA modes.

Strength functions calculated using moment method.



Future of HOSPHE ... HOSPHE-QRPA

HOSPHE-QRPA (spherical) is almost ready, uses
zero-range and separable pairing (J.T., Petr Vesely, B. G.
Carlsson).

HOSPHE-pnQRPA needed for beta decay.

Inclusion of Berggren basis to HOSPHE, continuum
calculations using N3LO EDF (Nicholas Michel)

Final stage of HOSPHE development is axial/triaxial
version.



HFODD-QRPA

Persons currently involved in this project are Alessandro Pastore,
Jacek Dobaczewski and J.T.

Works for both axially and triaxially deformed nuclei

The internal machinery of HFODD used to make QRPA
matrix-vector products.

Challenges:

Modifying an existing code can be hard

All spurious RPA modes always present



Summary

We know now how to make fully consistent, large-scale RPA or
QRPA calculations without forming the RPA matrix and
without having to construct all RPA eigenmodes (proof of
principle done).

Spherical HF/RPA code HOSPHE-RPA is ready and works,
HFB/QRPA code HOSPHE-QRPA is in final stages of
completion.

The QRPA solvers will eventually be published.

Thank you!
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