Exotic Nuclear Structures and Reactions from an Ab Initio Perspective

Hans Feldmeier GSI Darmstadt

Nuclear Degrees of Freedom

cm-coordinates and spins of nucleons

many-body-systems

Ab Initio : from the beginning, without additional assumptions or special models

"beginning"

- c.m. positions and spins of nucleons $(\mathbf{r}_i, \sigma_i, \tau_i)$ as degrees of freedom \implies many-body state $|\widehat{\Psi}\rangle \in \mathcal{H}$ Hilbert space
- interactions among nucleons approximated by potentials $\implies V_{NN} + V_{NNN}$ "realistic" V_{NN} describes NN phase shifts and deuteron

QCD motivated

- symmetries, meson-exchange picture
- chiral effective field theory

short-range phenomenology

• short-range parametrisation or "contact" terms

experimental two-body data

 scattering phase-shifts & deuteron properties reproduced with high precision

supplementary three-nucleon force

• adjusted to spectra of light nuclei

Potential and Nucleon Size

Ab initio treatment: solve many-body quantum problem

- $H_{\widetilde{\Psi}} | \widehat{\Psi}_n \rangle = E_n | \widehat{\Psi}_n \rangle$ with $H_{\widetilde{\Sigma}} = T_{\widetilde{\Sigma}} + V_{NN} + V_{NNN}$
- observables: energies E_n , moments $\langle \widehat{\Psi}_n | A | \widehat{\Psi}_n \rangle$, transitions $|\langle \widehat{\Psi}_k | A | \widehat{\Psi}_n \rangle|^2$ to be confronted with data

HOWEVER

HOWEVER, there are conceptional problems

- realistic V_{NN} not unique ! different phase-shift equivalent V_{NN} , V'_{NN} , V''_{NN} describe equally well the 2-body system
- $V_{NN} + V_{NNN} \iff V'_{NN} + V'_{NNN}$ each NN-interaction needs its NNN-part to describe equally well the 3-body system
- ► in nuclear structure theory there is not the one genuine NN or NNN force

and there are technical problems

• $H_{\widetilde{\Psi}_n} = E_n | \widehat{\Psi}_n \rangle$ cannot be solved numerically for larger mass numbers

Why?

Realistic Nuclear Force

Argonne V18 (S = 1, T = 0)

spins parallel or perpendicular to the relative distance vector

• strong repulsive core: nucleons can not get closer than ≈ 0.5 fm

central correlations

 strong dependence on the orientation of the spins due to the tensor force

tensor correlations

the nuclear force induces strong short-range correlations in the nuclear wave function

and there are technical problems

• $H | \widehat{\Psi}_n \rangle = E_n | \widehat{\Psi}_n \rangle$ cannot be solved numerically for larger mass numbers

Solution: treat short-range correlations by effective interactions

- Approximation: Hilbert space $\mathcal{H} = \mathcal{H}_{\mathsf{low}-k} \oplus \mathcal{H}_{\mathsf{high}-k}$ $\underbrace{\mathcal{H}^{\mathsf{eff}}}_{\sim} | \Psi_n \rangle = E_n | \Psi_n \rangle \text{ with } | \Psi_n \rangle \epsilon \mathcal{H}_{\mathsf{low}-k}$
- Unitary transformation $|\widehat{\Psi}_n\rangle = U |\Psi_n\rangle$ such that $\mathcal{H}^{\text{eff}} = U^{\dagger} \mathcal{H} \mathcal{U}$ does not connect $\mathcal{H}_{\text{low-}k}$ with $\mathcal{H}_{\text{high-}k}$ sounds great, but many-body forces appear $\mathcal{H}^{\text{eff}} = \mathcal{I} + \mathcal{V}_{\text{NN}}^{\text{eff}} + \mathcal{V}_{\text{NNN}}^{\text{eff}} + \mathcal{V}_{\text{NNNN}}^{\text{eff}} + \cdots$
- Other observables $A^{\text{eff}} = U^{\dagger}A U_{\sim}^{\dagger}$

*H*_{low-k} Hilbert space:Harmonic Oscillator Basis

No-Core Shell Model

Hartree Fock

NCSM for ⁷Li $H_{eff} = T + V_{NN}^{eff}$

• fast convergence of spectra, no scattering to high-*k*

Hartree-Fock

$H_{\text{eff}} = T + V_{\text{NN}}^{\text{eff}}$

*H*_{low-k} Hilbert space:Fermionic Molecular Dynamics

FMD many-body wave functions

Restore symmetries by projections

Variation After Projection (VAP)

Configuration mixing

FMD Many-Body Hilbert Space

Fermionic

Slater determinant

$$\left| \begin{array}{c} Q \end{array} \right\rangle = \mathcal{A}\left(\left| \begin{array}{c} q_1 \end{array} \right\rangle \otimes \cdots \otimes \left| \begin{array}{c} q_A \end{array} \right\rangle \right)$$

antisymmetrized A-body state

Molecular

single-particle states

$$\langle \mathbf{x} | q \rangle = \sum_{i} c_{i} \exp\left\{-\frac{(\mathbf{x} - \mathbf{b}_{i})^{2}}{2a_{i}}\right\} \otimes |\chi_{i}\rangle \otimes |\xi\rangle$$

 Gaussian wave-packets in phase-space, spin is free, isospin is fixed

Dynamics in Hilbert space

 Hilbert space contains shell-model, clusters, halos, scattering states spanned by one or several non-orthogonal $|Q^{(a)}\rangle$

$$\left|\Psi;J^{\pi}M\right\rangle = \sum_{a,K'}\psi_{aK'} P_{MK'}^{J^{\pi}} P^{\mathbf{P}=0} \left|Q^{(a)}\right\rangle$$

variational principle $\rightarrow Q^{(a)} = \{ q_{\nu}^{(a)}, \nu = 1 \cdots A \}, \psi_{aK'}$

Antisymmetrization

Multi-Configuration Mixing

most general projected state for multi-configuration calculations

$$\left|\Psi; J^{\pi}M\right\rangle = \sum_{aK} \psi_{aK} P^{\pi} P^{J}_{\sim MK} P^{\mathbf{P}=0} \left| Q^{(a)} \right\rangle$$

• task: find a set of intrinsic states $\{ | Q^{(a)} \rangle, a = 1, ..., N \}$ that describe the physical situation well

Multi-configuration calculations

$$\underset{\sim}{H}\left|J^{\pi}M,n\right\rangle = E_{n}^{J^{\pi}}\left|J^{\pi}M,n\right\rangle$$

- diagonalize Hamiltonian in this set of non-orthogonal projected intrinsic states

$$\sum_{bK'} \langle Q^{(a)} \left| HP_{KK'}^{J^{\pi}} P^{\mathbf{P}=0} \left| Q^{(b)} \right\rangle \cdot c_{bK'}^{(n)} = E_n^{J^{\pi}} \sum_{bK'} \langle Q^{(a)} \left| P_{KK'}^{J^{\pi}} P^{\mathbf{P}=0} \right| Q^{(b)} \right\rangle \cdot c_{bK'}^{(n)}$$

- energy levels $E_n^{J^{\pi}}$ and eigenstates $|J^{\pi}M, n\rangle$ describing nuclear many-body system

$$\left| J^{\pi}M, n \right\rangle = \sum_{bK'} c_{bK'}^{(n)} P^{\pi} P^{J}_{MK'} P^{\mathbf{P}=0} \left| Q^{(b)} \right\rangle$$

Cluster States in ¹²C

Astrophysical Motivation

Structure

- Is the Hoyle state a α -cluster state ?
- Other excited 0^+ and 2^+ states
- Analyze wave functions in harmonic oscillator basis

FMD - Variation, PAV^{π} , Multiconfig.

¹²C Hoyle State in Electron Scattering

 calculate formfactors, center-of-mass treated properly, formfactor is a A-body operator

$$F(\mathbf{q}) = \sum_{i} \left\langle \Psi_{a} \right| e^{i\mathbf{q} \cdot (\mathbf{x}_{i} - \mathbf{X})} \left| \Psi_{b} \right\rangle$$

- compare to experiment in Distorted Wave Born Approximation
- α-cluster and "BEC" calculated with mod. Volkov interation

M. Chernykh, H. Feldmeier, P. von Neumann-Cosel, T. Neff, A. Richter, PRL **98**, 032501 (2007)

"BEC" formfactors: Y. Funaki et al. EPJA 28(2006)259 and private communication

Cluster States in ¹²C Harmonic Oscillator $N \hbar \Omega$ Excitations

Occupation probabilities of spaces with N harmonic oscillator quanta

$$\operatorname{Occ}(\mathbb{N}) = \langle \Psi \left| \delta \left(\sum_{i=1}^{A} \left(\frac{H^{HO}(i)}{2} / \hbar \Omega - 3/2 \right) - \mathbb{N} \right) \right| \Psi \rangle$$

*H*_{low-k} Hilbert space:Fermionic Molecular Dynamics

Beryllium Isotopes

• α -clustering, halos in ¹¹Be and ¹⁴Be, N = 8 shell closure ?

Observables

- energies
- charge and matter radii, electromagnetic transitions

Thomas Neff Results still preliminary !

Beryllium Isotopes Variation after Projection

Beryllium Isotopes Binding energies

- large correlation energies due to cluster structure
- loosely bound systems gain most by configuration mixing

Beryllium Isotopes Charge Radii

Nörtershäuser *et al.*, Phys. Rev. Lett. **102**, 243002 (2009) Zakova, Neff, *et al.*, J. Phys. G, accepted for publication

Beryllium Isotopes N = 8 Shell Closure ?

- "almost correct" level ordering in ¹¹Be
- ¹²Be ground state dominated by p^2 configuration, sizeable admixture of s^2 and d^2 configurations which strongly mix

¹⁰Be

	FMD(Multiconfig)	Experiment
$B(E2;2^+_1\rightarrow 0^+_1)$	11.27 $e^2 \text{fm}^4$	$10.2 \pm 1.0 \ e^2 \text{fm}^4$
$B(E2;0^+_2\rightarrow 2^+_1)$	4.99 $e^2 \text{fm}^4$	$3.2 \pm 1.9 \ e^2 \text{fm}^4$
$B(E1;0^+_2 \rightarrow 1^1)$	$0.013 \ e^2 \text{fm}^2$	$0.013 \pm 0.004 \ e^2 \mathrm{fm}^2$

¹¹Be

	FMD(Multiconfig)	Experiment
$B(E1; 1/2_1^+ \to 1/2_1^-)$	$0.020 \ e^2 \text{fm}^2$	$0.099 \pm 0.010 \ e^2 \mathrm{fm}^2$

¹²Be

	FMD(Multiconfig)	Experiment	
$B(E2;2^+_1\rightarrow 0^+_1)$	8.27 $e^2 \text{fm}^4$	$8.0 \pm 3.0 \ e^2 \text{fm}^4$	
$B(E2;0^+_2\rightarrow 2^+_1)$	6.50 $e^2 \text{fm}^4$	$7.0 \pm 0.6 \ e^2 \text{fm}^4$	
$M(E0;0^+_1\to 0^+_2)$	1.05 $e fm^2$	$0.87 \pm 0.03 \ e fm^2$	
$B(E1;0^+_1\to 1^1)$	$0.08 \ e^2 \text{fm}^2$	$0.051 \pm 0.003 \ e^2 \mathrm{fm}^2$	

Nakamura et al., Phys. Lett. B394, 11 (1997).

Shimoura et al., Phys. Lett. B654, 87 (2007).

Iwasaki et al., Phys. Lett. B491, 8 (2000).

- extended *s*-wave halo
- s_{1/2} spectroscopic factor overestimated compared to results obtained from knockout and transfer reactions

Spectroscopic Factors					
¹¹ Be	¹⁰ Be	l_j	S		
$1/2^{+}$	0^+	<i>s</i> _{1/2}	0.937		
	2+	$d_{5/2}$	0.094		
	2+	$d_{3/2}$	0.007		
5/2+	0^+	$d_{5/2}$	0.543		
	2+	<i>s</i> _{1/2}	0.329		
	2+	$d_{5/2}$	0.243		
$1/2^{-}$	0^+	$p_{1/2}$	0.805		
	2+	$p_{3/2}$	0.779		

Nordic Winter Meeting on FAIR Physics - 28

Reactions

Program

- FMD Hilbert space should contain besides bound states, also resonances and scattering states
- Implement boundary conditions
- Phase shifts, capture cross section

³He(α, γ)⁷Be reaction

Many-Body Hilbert Space for Scattering

Localized FMD states can represent many-body scattering states

asymptotic states product of "frozen" FMD states

scattering state:

 $\left(\left| {}^{7}\text{Be} \right\rangle, \left| {}^{7}\text{Be}^{*} \right\rangle \ldots \right)$ FMD states for compound system in the interaction region

```
\left( \mathcal{A} \left| {}^{3}\text{He}, -D_{i}/2 \right\rangle \otimes \left| {}^{4}\text{He}, +D_{i}/2 \right\rangle \right)
```

+ ... +interaction region

asymptotic

Boundary conditions

- matching to the Coulomb solution of two point-like nuclei
- phase shifts for scattering or widths of resonances

⁷Be Levels Bound and in Continuum

• boundary condition outgoing wave only, Gamov state

 $\langle r | \Psi, [\ell \frac{1}{2}] J^{\pi} \rangle \xrightarrow{r \to \infty} iF_{\ell}(kr) + G_{\ell}(kr), \quad k = +\sqrt{2\mu Z}$

- complex eigenvalue $Z = E - i \Gamma/2$

interaction slightly adjusted to give correct threshold

3 He – 4 He **phase shifts**

• boundary condition Coulomb scattering solutions

$$\langle r | \Psi, [\ell \frac{1}{2}] J^{\pi} \rangle \xrightarrow{r \to \infty} F_{\ell}(kr) + \tan(\delta_{\ell}(k)) G_{\ell}(kr), \quad k = +\sqrt{2\mu E}$$

- phase shift $\delta(E)$

S-Factor of Radiative Capture

- Capture from $1/2^+$, $3/2^+$ and $5/2^+$ scattering states into $3/2^-$ and $1/2^-$ bound states
- ⁷Be described by single PAV^π configuration (dashed line) or VAP configurations for 3/2⁻ and 1/2⁻ (dash dotted line) and additional 5/2⁻ and 7/2⁻ VAP configurations (solid line)

interaction slightly adjusted to give correct threshold

Concluding Remarks

How to build a nuclear theory

- 1) Choose proper relevant degrees of freedom
 - e.g. c.m. positions & spins of nucleons,
 - one-body & pairing densities for larger nuclei
- 2) Find corresponding Hamiltonian (energy expressed in terms of deg. of freedom)
- 3) Calculate observables: energies, transitions, moments, cross sections, ... compare with data, make predictions

Concluding Remarks

How to build a nuclear theory

- 1) Choose proper relevant degrees of freedom
 - e.g. c.m. positions & spins of nucleons,
 - one-body & pairing densities for larger nuclei
- 2) Find corresponding Hamiltonian (energy expressed in terms of deg. of freedom)
- 3) Calculate observables: energies, transitions, moments, cross sections, ... compare with data, make predictions

Nucleons are complex many-body systems, not point like

- NN-interaction is not a priori given, not fundamental is an effective interaction, depends on many-body Hilbert space
- NNN-interactions are needed

 $\left(\frac{V_{NN} + V_{NNN}}{V_{NNN}}\right)$ has to be treated consistently

- 2- and 3-body systems do not uniquely fix $\left(\frac{V_{NN} + V_{NNN}}{V_{NNN}} \right)$

Concluding Remarks

Novel concepts & methods progressed nuclear structure substantially in the last decade

- Chiral-PT, NN + NNN consistent
- Phase-shift equivalent low-momentum effective interactions UCOM, SRG, V_{low-k}, tame short-range correlations
- Exact few-body methods, Fadeev Yakubowski, hypersherical harmonics, ...
- No-core shell model, Coupled Cluster, Importance sampling, ... medium and long-range correlations by configuration mixing
- Exotic states, clusters, halos, require non-standard Hilbert spaces, FMD, ...
- First ab initio microscopic nucleus-nucleon scattering, nucleus-nucleus scattering
- Ab initio energy density functionals ?

FAIR will be a key promoter driving nuclear structure theory to new frontiers

Thanks to my Collaborators

- A. Cribeiro, K. Langanke, T. Neff, D. Weber GSI Darmstadt
- H. Hergert, R. Roth Institut für Kernphysik, TU Darmstadt

Helium Isotopes ⁴He – ⁸He

Structure

- Borromean behaviour
- Zero-point oscillation of soft dipole mode

Observables

- Charge radii
- Matter radii
- Proton, neutron densities

Helium Isotopes

dipole and quadrupole constraints

Helium Isotopes

Exp: Ozawa, Suzuki, Tanihata, NPA693 (2001) 32; Raman, Nestor, Tikkanen, Atomic Data and Nucl. Data Tables 78 (2001) 1

⁶He and ⁸He charge radius: P. Mueller et al, Phys. Rev. Lett. **99** (2007) 252501

Helium Isotopes

Exp: Ozawa, Suzuki, Tanihata, NPA693 (2001) 32; Raman, Nestor, Tikkanen, Atomic Data and Nucl. Data Tables 78 (2001) 1

⁶He and ⁸He charge radius: P. Mueller et al, Phys. Rev. Lett. **99** (2007) 252501

Nordic Winter Meeting on FAIR Physics - 41

Neon Isotopes ¹⁷Ne – ²²Ne

Structure

- s^2/d^2 occupation in ¹⁷Ne and ¹⁸Ne
- ³He and ⁴He cluster admixtures

Observables

- Charge Radii
- Matter Radii
- ► Is ¹⁷Ne a Halo nucleus ?

Neon Isotopes Variation after Parity Projection VAP^{π}

Intrinsic proton/neutron densities of dominant FMD state

- Variation after parity projection on positive and negative parity
- Crank strength of spin-orbit force, changes properties of single-particle orbits and their occupations
- " s^2 " and " d^2 " minima in 17,18 Ne
- explicit cluster configurations: ¹⁷Ne: ¹⁴O-³He ¹⁸Ne: ¹⁴O-⁴He ¹⁹Ne: ¹⁶O-³He, ¹⁵O-⁴He

²⁰Ne: ¹⁶O-⁴He ²¹Ne: "¹⁷O"-⁴He ²²Ne: "¹⁸O"-⁴He

 Q^{\pm} > minima

Neon Isotopes Charge Radii

- charge radii of 17,18 Ne depend strongly on ${}^{s^2/d^2}$ occupations
- cluster admixtures responsible for large charge radii in ^{19–22}Ne
- measurements of charge radii by COLLAPS@ISOLDE

W. Geithner, T. Neff, et al., submitted to PRL

Nordic Winter Meeting on FAIR Physics - 44

Neon Isotopes Separation Energies and Matter Radii

matter radii from interaction cross sections

A. Ozawa et al., Nuc. Phys. A693 (2001) 32

• good agreement with exception of ¹⁹Ne

	FMD	Experiment
<i>r</i> _{ch} [fm]	3.03	3.042(17)
<i>r</i> _{mat} [fm]	2.75	2.75(7)
$B(E2; \frac{1}{2}^{-} \to \frac{3}{2}^{-})[e^{2} \text{fm}^{4}]$	76.7	66^{+18}_{-25}
$B(E2; \frac{1}{2}^{-} \to \frac{5}{2}^{-})[e^{2} \text{fm}^{4}]$	119.8	124(18)
occupancy s^2	40%	
occupancy d^2	55%	

- proton skin $r_p r_n = 0.45$ fm
- 40% probability to find a proton at r > 5 fm

FMD - Projection, Variation after Proj., Multiconfiguration

Nordic Winter Meeting on FAIR Physics - 50

Collective Coordinate Representation

Size Measure

- Operator \underline{B} measures extension of the system

$$\underset{\sim}{B} = \frac{1}{A^2} \sum_{i < j = 1}^{A} (\underbrace{x(i)}_{\sim} - \underbrace{x(j)}_{\sim})^2$$

Asymptotic Interpretation $r \gg R_{C1} + R_{C2}$

Eigenvalues relate to relative distance *r* (for each $J^{\pi}M$) $\underset{\sim}{B} |\beta_l\rangle = \beta_l |\beta_l\rangle$

$$\Rightarrow \beta(r) = \frac{1}{A} \left(\frac{A_1 A_2}{A} r^2 + A_1 R_{C1}^2 + A_2 R_{C2}^2 \right) \Rightarrow r_l \leftrightarrow \beta_l$$

- Eigenvectors are localized in β and r

 $\langle \beta_l \left| \underset{\sim}{B^2} \left| \beta_l \right\rangle - \langle \beta_l \left| \underset{\sim}{B} \left| \beta_l \right\rangle^2 = 0$

 $\Rightarrow \Psi(r_l) := \langle \beta_l | J^{\pi}M; \Psi \rangle$ relative wave function

Boundary Conditions 1

Implement boundary conditions using the Collective Coordinate Representation

• Eigenvalue problem for scattering state $|J^{\pi}M;\Psi\rangle$

• Express unknown ψ_{aK} by known asymptotic solution $\langle r | w \rangle = w(r)$ like

$$\frac{\left\langle \beta_{N} \left| \begin{bmatrix} H, B \end{bmatrix}^{s} \middle| J^{\pi}M; \Psi \right\rangle}{\left\langle \beta_{N} \middle| J^{\pi}M; \Psi \right\rangle} \stackrel{!}{=} \frac{\left\langle r_{N} \left| \begin{bmatrix} \frac{1}{2\mu} \left(-\frac{d^{2}}{dr^{2}} + \frac{\ell(\ell+1)}{r^{2}} \right) + \frac{Z_{1}Z_{2}e^{2}}{r}, \beta(r) \end{bmatrix}^{s} \middle| w \right\rangle}{\left\langle r_{N} \middle| w \right\rangle} \qquad s = 1, \cdots, m$$

FMD many-body world = asymptotic point charge world

 Hamiltonian and Overlap matrix get modified both depend on complex eigenvalue Z

Boundary Conditions 2

Different boundary conditions — Different physical situations

- Whittaker function
 - $\langle r | w \rangle = W_{\ell}(\mathbf{k}r) , \mathbf{k} = +\sqrt{-2\mu \mathbf{E}}$
- **bound state** with tail tunneling into Coulomb barrier, E < 0
- outgoing Coulomb scattering solution

 $\langle r | w \rangle = iF_{\ell}(\mathbf{k}r) + G_{\ell}(\mathbf{k}r) , \mathbf{k} = +\sqrt{2\mu Z}$

Gamov state with resonance energy and width $Z = E - i\Gamma/2$

• Coulomb scattering solution with phase shift

$$\langle r | w \rangle = F_{\ell}(\mathbf{k}r) + \tan(\delta_{\ell}(\mathbf{E})) G_{\ell}(\mathbf{k}r) , \ \mathbf{k} = +\sqrt{2\mu \mathbf{E}}$$

– continuum solution with phase shift $\delta_{\ell}(E)$, E > 0

⁷Be Levels Bound and in Continuum

- implement boundary conditions using the Gamov state, outgoing only
- Hamiltonian and Overlap matrix get modified, complex eigenvalue

Data: R. J. Spiger, T. A. Tombrello, Phys. Rev. 163(1967)162

⁷Be **Phase Shift** 5/2⁻ **Resonance**

Data: R. J. Spiger, T. A. Tombrello, Phys. Rev. 163(1967)162

⁷Be **Phase Shifts, nonresonant**

Nordic Winter Meeting on FAIR Physics - 60

Microscopic Nucleus-Nucleus Interactions

- Fermionic Molecular Dynamics (FMD) many-body states
- Effective nucleon-nucleon interaction derived from realistic Argonne V18 interaction

S-Factors

