

Technetics Group Presentation – UHV – Labs

October 14th 2016

ENGINEERED SOLUTIONS FOR DEMANDING ENVIRONMENTS*

EnPro Industries companies

Bruno Quilling

Market Manager "High Performance Seals"

ENGINEERED SOLUTIONS FOR DEMANDING ENVIRONMENTS® www.technetics.com

Technetics Group

Falkenweg 1 D-41468 Neuss, Germany Tel: 0800 627 01 51 (from Germany) Cell: +49 (0)151 461 468 59 bruno.quilling@technetics.com

Sealing Products

Engineered Products

Engine Products & Services

Revenue: \$ 1.2 B (2015) / 6,200 employees / 37 primary manufacturing locations

Amounts shown include the deconsolidated operations of Garlock Sealing Technologies LLC and its subsidiaries

Technetics Group Overview

Locations: 13 global manufacturing locations

Employees: Over 1000 employees worldwide

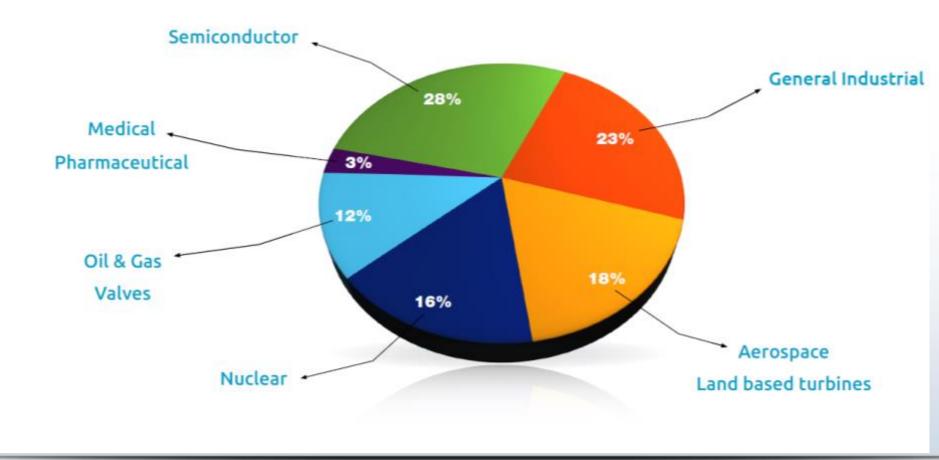
More than 115 engineers and technical sales persons

1 R&D center and 9 Laboratories

A coming together of the world's top-performing businesses...

Technetics Group is the combination of eight of the world's best-known sealing and critical component design and manufacture businesses: Helicoflex, Garlock France, Tara Technologies, Technetics, Wide Range Elastomers, Plastomer Technologies, Hydrodyne and Fabrico.

Technetics Group brings together brand names that are used throughout the world in critical markets: HELICOFLEX® resilient metal seals, BELFAB® edge-welded metal bellows, FELTMETAL™ abradable seals and acoustic media, BIO-GUARDIAN® elastomer seals and ORIGRAF® graphite seals.



Technetics Group Overview

Sales per market

maestral® Sealing Laboratory

The laboratory that uses science to serve sealing

Collaboration between Technetics Group & CEA since 1969

SEALING LABORATORY MISSIONS

- QUALIFICATION: Simulation of actual working conditions in order to qualify sealing solutions in specific environment.
- CHARACTERISATION: Fundamental tests aiming at understanding in detail the seal behaviour.
- EXPERTISE: Physical, mechanical and numerical analysis aiming at understanding sealing mechanisms or at explaining failure.
- DEVELOPMENT: Complete projects utilizing all equipments and resources to design, characterize and qualify new products.

Equipment

Hydraulic presses (up to 2500kN)

Ovens and furnaces (up to 1100°C/2012°F)

Test benches
Gas booster pressure unit (2000 bar)

Measuring instruments & data acquisition systems
(measurement column, computer-controlled microscope, microdurometer, helium-mass spectrometers, 3D laser profilometer)

CAD-CAM design tools, finite elements calculation,
3D simulation

Technetics Products in UHV & Cryogenic (Labs)

- Metals seals
 - HELICOFLEX®
 - CF
 - Machined

- Elastomer seals
- Quick Connection
 Systems (QDS®)
- Bellows

Typical UHV & Cryogenic Sealing Problems

- Aluminum flanges / Dissimilar materials
- Light weight flanges / Insufficient bolting
- High temperature bake out
- Cryogenic temperatures
- Odd shaped chamber port
- Large chamber port
- Outgassing / Permeability
- Virtual leaks
- Radio Frequency (RF) compatible

Metal Seal Selection

	SEAL TYPE					
Application Information	0	0	0	\bigcup	X	1
	Helicoflex*	Delta*	O-Flex™	C-Flex™	E-Flex™ U-Flex™	Machined Seal*
Ultra High Vacuum	•		•	•	•	A
Low Pressure		•	A	A	A	A
High Pressure		•	A		•	A
Cryogenic Temperature		A	•	•	•	
High Temperature		A	A	A	A	•
Spring Back	•	•	•	A		
Shaped Seals	A	A	A	•	•	•
Axial Sealing	A	•	•	A	•	•
QDS Compatible	A	A	•	•	•	•
Seating Load	High	Moderate	High Moderate	Moderate Low	Low	High Moderate
Leak Rate Approximation	Helium	Ultra- Helium	Helium Bubble	Helium Bubble	Low Bubble	Helium

Leak Legend	Approximate Leak Rates per meter of circumference
Ultra-Helium	≤ 1 x 10 ⁻¹¹ std.cc/sec He
Helium	≤ 1 x 10 ⁻⁹ std.cc/sec He
Bubble	≤ 1 x 10 ⁻⁴ std.cc/sec He
Low Bubble	≤ 25 cc/sec @ 0.345 MPa Nitrogen per 25.4 mm of diameter

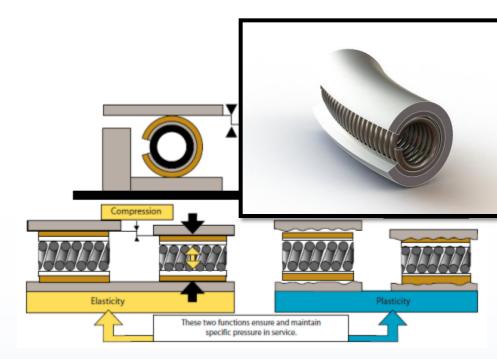
Seal	Load: Wall Thickness or Spring Load
Surfa	ce Finish: Seal and Cavity
Surfa	ce Treatment: Coating/Plating/Jacket Material

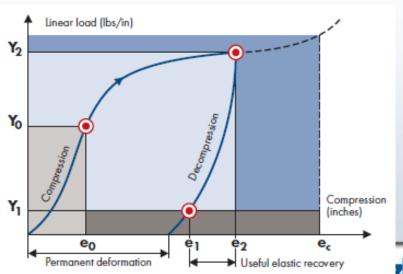
Application Legend		
Recommended - Excellent		
Recommended - Good	A	
Optional - Special Design	•	
Not Recommended		

HELICOFLEX® Principle

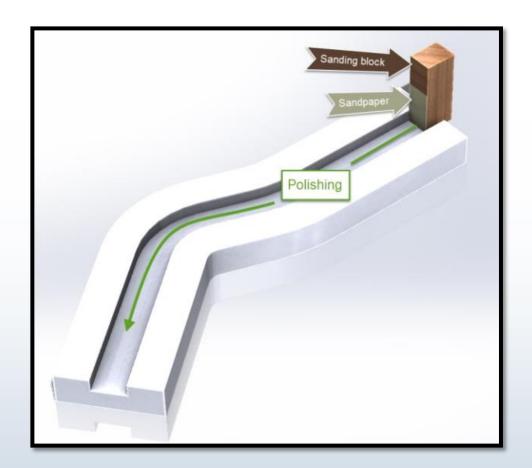
The sealing principle of the HELICOFLEX® family of seals is based upon the plastic deformation of a jacket of greater ductility than the flange materials.

This combination of elasticity and plasticity makes the HELICOFLEX® seal the best overall performing seal in the industry.

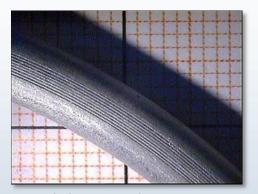

 Y_0 = load on the compression curve above which leak rate is at required level


 Y_2 = load required to reach optimum compression e_2

 Y_1 = load on the decompression curve below which leak rate exceeds required level

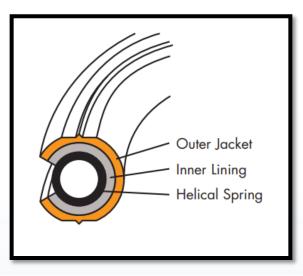

 e_2 = optimum compression

 e_c = compression limit beyond which there is risk of damaging the spring



HELICOFLEX® Seal: Performance

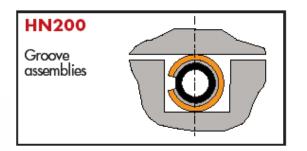
Poor Flange Finish: Radial Marks

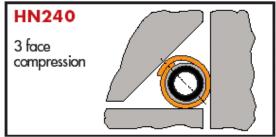


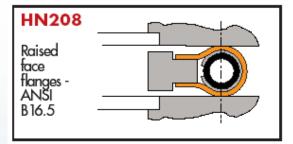
Good Flange Finish: Concentric Marks

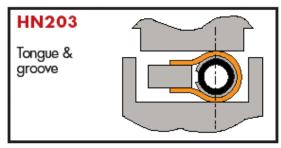
DELTA® Seal: Performance

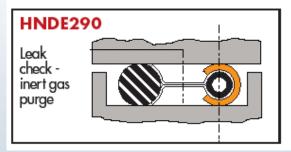
- DELTA® seals can provide Helium leak rate performance of $< 1 \cdot 10^{-11} \text{ mbar} \cdot \text{L} \cdot \text{s}^{-1}$ (per meter of seal circumference)
- Actual leak rate will depend on seal jacket, cavity/flange finish, bolting, hardware robustness and cleanliness level
- Aluminum jacket: seals well on Aluminum flanges
 - Ex: Flange = 6061 with T6 Heat Treatment
 - Min Flange Hardness: 65 HV

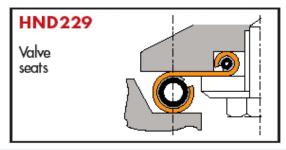


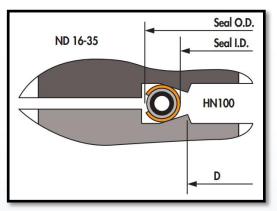

Dimensions:	(Ø 3.8 to Ø 2000mm)	
	Ø 0.150 in. to Ø 80 in.	
Temperature:	- 272 to 700°C	
	- 458 to 1292°F	
	+1.8 to 973°K	
Helium sealing level:	$Q \le 10^{-13} atm \ cm^3 \ s^{-1}$	
Seal Classification Type:	HNV	

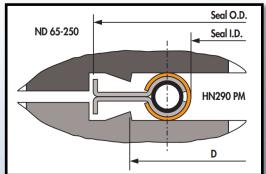


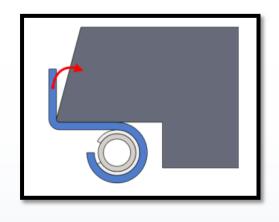

HELICOFLEX® Assembly Possibilities

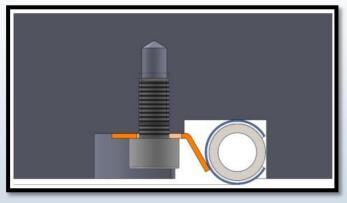

TYPICAL CONFIGURATIONS

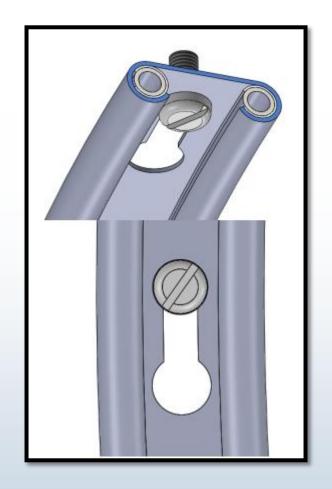




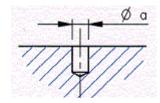



Also as CF Flange Upgrade



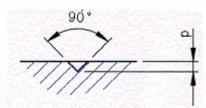


HELICOFLEX® Fixing systems

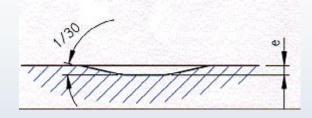

Surface defects

Torus

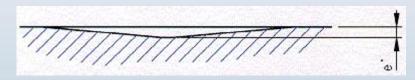
Ø12,7mm


Ø2,5mm

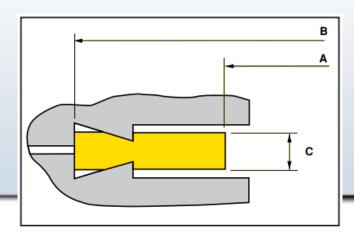
Stitching



OK


Scratch

Local


Wide

<= e'=0,56mm 0,05mm

Copper Flat Seals for CF Flanges

- Cost-effective solution in UHV application unless
 - Too high temperature transient
 - Too big dimensions
 - No shape seal possible
 - High load required
 - Damaged flanges

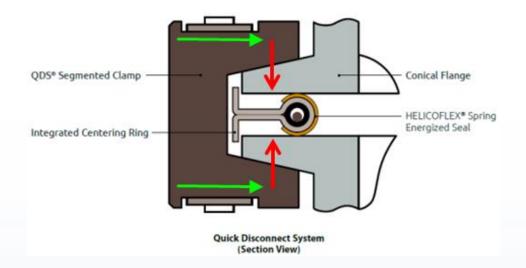
ND	Dimensions mm A B C	Code
16	16,2 x 21,3 - 2	157414
25	25,4 × 32,8 - 2	157447
35	36,8 x 48,1 - 2	157413
36	39,2 x 48,1 - 2	157412
50	50,8 x 61,6 - 2	157452
63	63,6 x 82,4 - 2	157435
64	72 x 82,4 - 2	157436
75	76,2 x 91,4 - 2	157453
100	101,7 x 120,4 - 2	157454
125	127 x 141,4 - 2	157437
150	152,5 x 171,3 - 2	157455
200	203,3 x 222,1 - 2	157456
250	254 x 273 - 2	157438

Note: Other dimensions available on request.

Typical ISO KF System

- Typical UHV KF clamps are NOT strong enough to compress HELICOFLEX® seals (High seating Load)
- QDS clamp and HELICOFLEX® seals can be used with standard ISO KF or PNEUROP flanges.
- QDS system
 - Higher temperature
 - No outgassing
 - No permeation
- ISO Compatible QDS series
 - Class 150
 - Class 300

Sizes: KF10 - KF50


QDS Quick Disconnect System

Class 150 - Standard

- Aluminum clamp segments
- Non magnetic
- Vacuum and ultra-vacuum applications
- Limited to 200°C
- Compatible with ISO KF flanges

Class 300 - Standard

- Stainless steel clamp segments
- Carbon steel screw (Stainless on request)
- Vacuum and low pressures
- Adapted to metal seal soft jackets
 - Aluminum, Silver, Copper
- Usable up to 300°C
- Cryogenic temperatures: < 1.8° K
- Compatible with ISO KF flanges

Machined Seals

- All metal Designed to Have Spring Back
- Ideal for Small Diameters
- Typical Materials
 - Aluminum
 - Nickel
 - Stainless Steel
- Retainer Assembly
 - Can hold multiple seals
 - Easy installation

Typical UHV Applications

Particle Accelerators

- Beam tube connections
- Target chambers
- RF Connections
- Cryogenic (Superconducting)

Fusion Reactors/Devices

- Chambers
- Pumping
- Neutron beam injection

Physics - Nuclear & Med Research

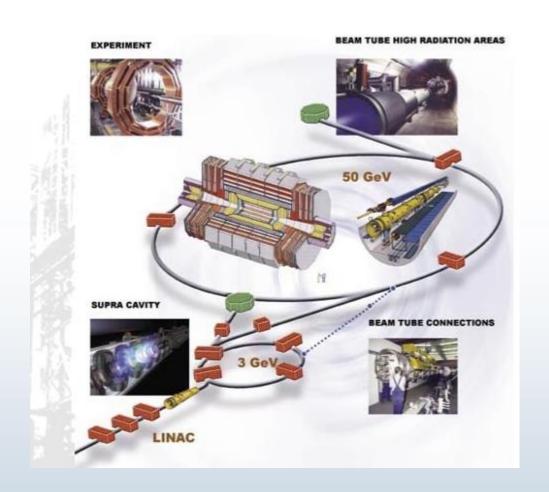
- Custom shapes/chambers
- Target chambers
- RF Connections

Semiconductor

- PVD Chambers
- Cluster tools, Valves

Reprocessing and storage

- Areva NC reprocessing plant
- Reprocessing research
- Cask containers for storage
 (300-years simulation ongoing)

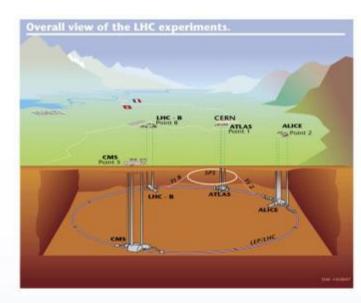


R&D Labs: Particles Accelerators

Main projects

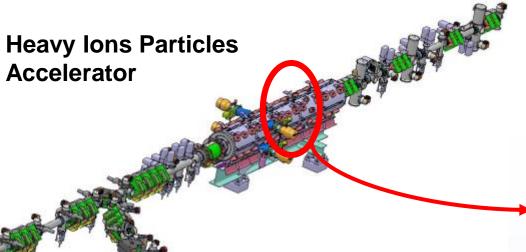
- LHC / CERN (Switzerland)
- B-Factory (Japan)
- J-Park (Japan)
- Fair (Germany)
- US/DE Universities
- •

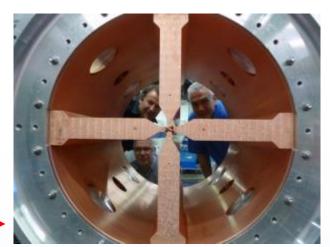
R&D Labs: CERN LHC


- 52 000 HELICOFLEX® seals in multiple configurations
- 6 000 quick-disconnect systems
- 70 000 of the more standard CF seals (OFS copper)
- Cryogenic applications: 1,6 K supercritical Helium systems
- Sealing performance: $< 10^{-11}$ mbar · L · s^{-1} .
- Large rectangular sizes of over 2m length

600mm Quick Disconnect System on Beam Dump

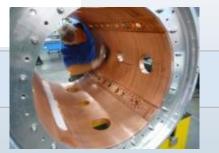
Partial view of the 17 miles-long racetrack




LHC: collider expected to accelerate protons to energies of seven trillion electron volts, smash them together, recreating conditions in the primordial fireball only a trillionth of a second after the Big Bang

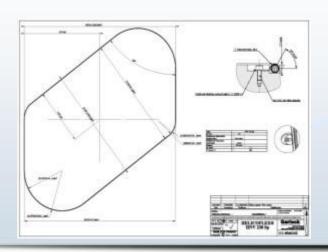
March 2013: CERN discovers Higgs Boson particle, purpose of LHC construction

R&D Labs: GANIL Spiral 2



On-site PREST incl. flange polishing and HELICOFLEX® installation

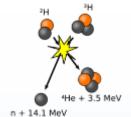
✓ Sealing performance increased by 30%



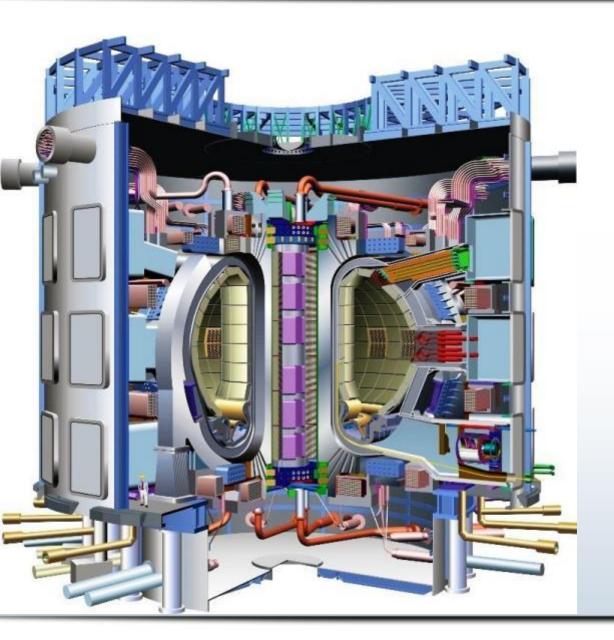
R&D Labs: Laser Mega Joules

 Nuclear fusion simulation laboratory, to avoid "real" nuclear tests

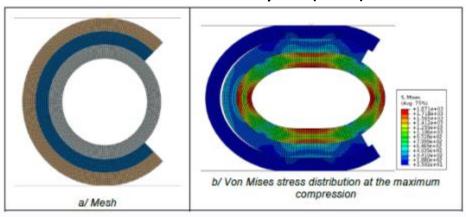
- Delivered
 - Complex design shaped Helicoflex
 - Silicone seals : Special compound developed with CEA
 - On-site PREST

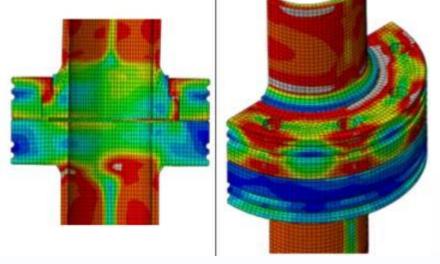


Target:
Deuterium 0,4 mg +
Tritium 0,6 mg

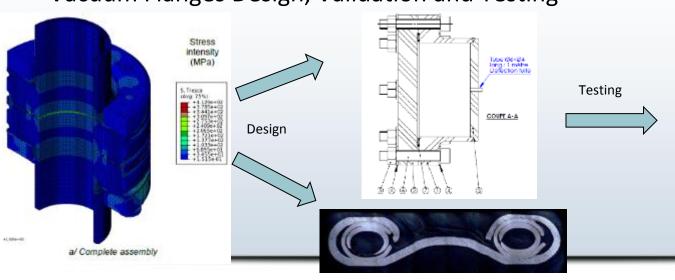


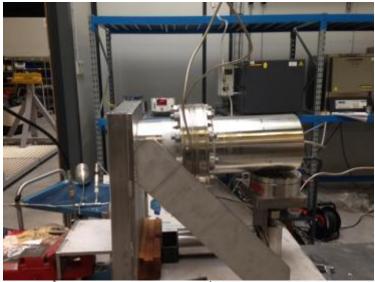
Laser

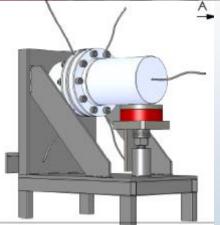


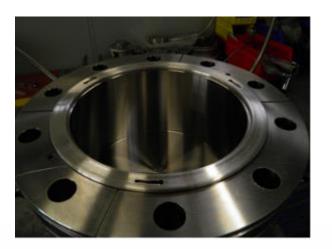

ITER Project Update

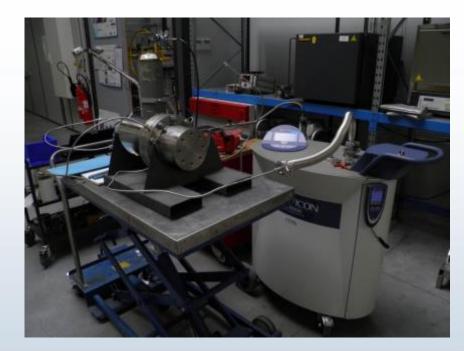
Vacuum Section Update


Finite Element Analysis (FEA)

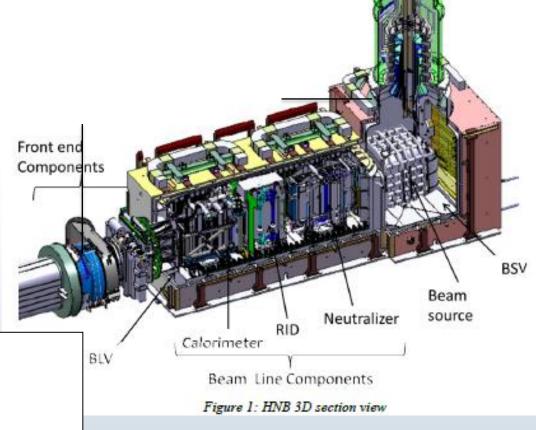

Bending Simulation

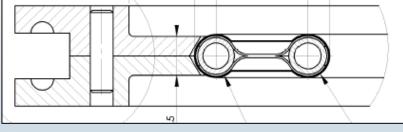

Vacuum Flanges Design, Validation and Testing



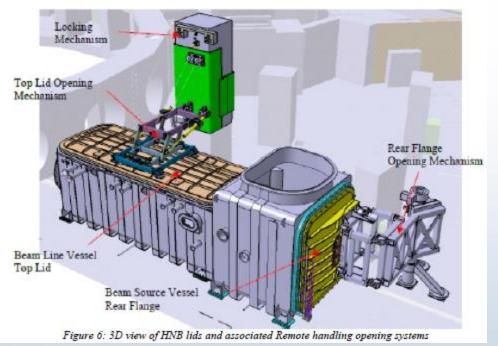


Vacuum flanges Phase II



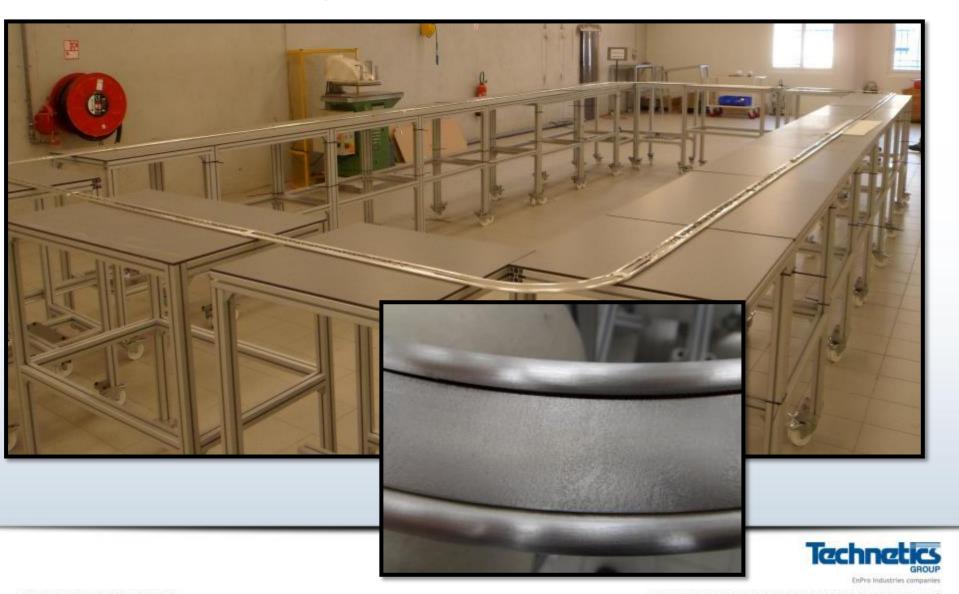


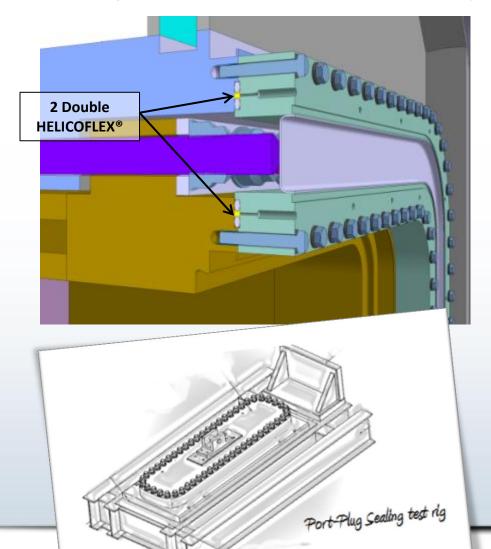
Project: NBI front end Components

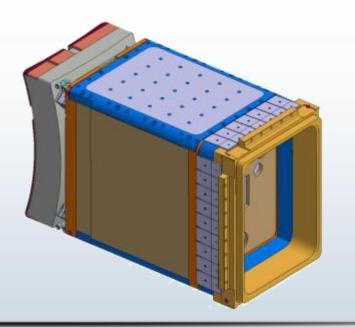

- HELICOFLEX® design improvement allowing advanced remote handling solution
- Possibility to duplicate design to other ITER application

Challenging Project: NBI top lid seal

- R&D contract signed 42 k€
- Unknown HELICOFLEX® scale (9m x 3m)
- Challenging manufacturing process
- Mock-up under process

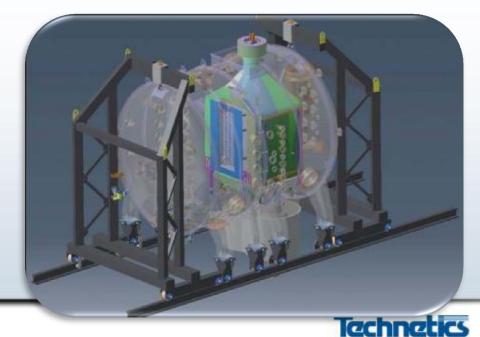





Current development

Project: Helicoflex vs. lip seals on Port-Plugs

- Port-Plug sealing solutions
 vs. lip-seals solution
- Quantities: 18 upper / 15 equatorial
 / 5 divertor ports



SPIDER Project – Kenol Flanges

- ITER SPIDER Project Italy
- Conditions:
 - Pressure : 30 bars
 - Temperature: 180°C
 - Sealing criteria: $< 10^{-8} \text{ mbar} \cdot \text{L} \cdot \text{s}^{-1}$

Calcul code : DESP97/23/CE

