MRPC performance studies with cosmic muon radiation

Dennis Sauter
Physikalisches Institut
Heidelberg University

Content

High voltage scan for MPRC3 types a and b (already shown)

- efficiency
- time resolution
- mean cluster size
- streamer probability
 - rate

Performance of detectors depending on particle track (new)

Phi and Theta angle dependence on...

- time & space resolutions
 - cluster size
 - ToT

Test setup

3 boxes, 2 detectors each 6 RPCs in a row

PADI Threshold:
-300 mV (Tsinghua)
-165 mV (USTC)

Tsinghua 900 Tsinghua 901

USTC 910 USTC 911

USTC 920 USTC 921

Analysis - Tracking

```
Tracking with iter_tracks.sh ana_trks.C(nEvents, iTrackingSetup, dChi2Lim2,TofGeo)
```

nEvents = number of events used, iTrackingSetup = see Figure, dChi2Lim2 = acceptance cut for hits, $TofGeo = Geometry \ version$

```
switch (iTrackingSetup){
                                                                Minimum number of stations to build a track
case 1:
  tofFindTracks->SetMinNofHits(5);
                                                                    Total number of stations present
  tofFindTracks->SetNStations(6);
                                                            Required number of stations for "all station tracks"
  tofFindTracks->SetNRegStations(6); -
  tofFindTracks->SetStation(0, 9, 0, 0);
                                                  // THU
                                                                          (if many layers are used)
  tofFindTracks->SetStation(2, 9, 0, 1);
                                                  // THU
  tofFindTracks->SetStation(3, 9, 1, 0);
                                                  // USTC
  tofFindTracks->SetStation(4, 9, 1, 1);
                                                  // USTC
  tofFindTracks->SetStation(5, 9, 2, 0);
                                                  77 USTC
                                                                    SetStation(TrackOrder,Sm,Box,RPC)
  tofFindTracks->SetStation(1, 9, 2, 1);
                                                  // USTC
  tofTrackFinder->SetSIGT(0.08);
  break:
```

Analysis - Tracking

Efficiency vs. Field strength

Time resolution vs. Field strength

Mean cluster size vs. Field strength

Streamer probability vs. Field strength

Rate vs. Field strength

Differential Analysis

Tracking allows for spacial differential performance analysis Example for Tsinghua's Type a RPC

- Upper left: Number of tracks per cm²
- Lower left: efficiency
- Lower right: time resolution

Test setup

Same setup used as before:

3 boxes, 2 detectors each → 6 RPCs in a row

Both types at ~112 kV/cm

Threshold at -300 mV (Tsinghua)/ -165 mV (USTC) as before

Tracking acceptance: $\chi^2 = 3.5$

 \Rightarrow hits that are more than 3,5 σ away from

predicted positions

are ignored

Tracking angles

Tracking allows for extracting trajectory angles of cosmics

 Φ : pTrk->GetPhi(); rotation in detector plane (x-y) Θ : pTrk->GetTheta(); angle away from vertical (z-axis)

Range:

 $\Psi = 0, \pi, 2\pi$ trajectory along x-axis (across strips) $\Psi = \pi/2, 3\pi/2$ trajectory along y-axis (along strips)

 $\Theta = 0$ trajectory along z-axis (perpendicular to surface)

Theta & Phi - Cluster size

Theta & Phi - ToT

Theta & Phi - Average ToT

Theta & Phi - Time resolution

Theta & Phi - X Residual

Dennis Sauter

Theta & Phi - Y Residual

Theta dependencies

Cluster size & TOT:

larger angles create larger clusters and therefore more accumulated TOT Geometrically reasonable

T, X, Y Residuals:

Time resolution is better for larger angles X resolution is worse for larger angles

Y resolution is slightly worse for larger angles

Phi dependencies

Everything but time shows phi dependencies Clusters tend to be bigger for $0^{\circ}/360^{\circ}$ & 180° which points to $\pm x$ as more strips are potentially covered (variation in theta) TOT follows same trend as mean cluster size X and Y resolution are worse if trajectory points in respective direction

Thanks for your attention!