

CBM Day-1 measurements with hadronic observables

I. Vassiliev for the CBM Collaboration

- Physics case
- Multi strange hyperons
- Hyper nuclei
- Tests with STAR data
- Summary

Physics case: Exploring the QCD phase diagram

Projects to explore the QCD phase diagram at large μ_B : RHIC (STAR) beam energy-scan, HADES, NA61@SPS,

MPD@NICA: bulk observables

CBM: bulk and rare observables, high statistic!

The equation-of-state at high ρ_B collective flow of hadrons, particle production at threshold energies: multi-strange hyperons, hypernuclei

Deconfinement phase transition at high ρ_B excitation function and flow of strangeness $(K, \Lambda, \Sigma, \Xi, \Omega \text{ and } \phi)$

Chiral symmetry restoration at high ρ_B in-medium modifications of hadrons (ρ) excitation function of multi-strange (anti)hyperons

QCD critical endpoint

excitation function of event-by-event fluctuations $(\pi, K, p, \Lambda, \Xi, \Omega...)$

Experiments exploring dense QCD matter

CBM:

unprecedented
(high) rate
capability

- determination of (displaced) vertices with high resolution ($\approx 50 \mu m$)
- identification of leptons and hadrons
- fast and radiation hard detectors
- self-triggered readout electronics
- high speed data acquisition and
- online event selection
- powerful computing farm and 4D tracking
- software triggers

Strangeness world data

No data available at FAIR energy

In the AGS (SIS100) energy range, only about 300 Ξ -hyperons have been measured in Au+Au collisions at 6AGeV

High-precision measurements of excitation functions of multi-strange hyperons in A+A collision with different mass numbers A at SIS100 energies have a discovery potential to find a signal for the onset of deconfinement in QCD matter at high net-baryon densities.

QGP and Chiral symmetry restoration

"Chiral symmetry restoration versus deconfinement in heavy-ion collisions at high baryon density"

W. Cassing, A. Palmese, P. Moreau, and E. L. Bratkovskaya Phys.Rev. C93 (2016), 014902, arXiv:1510.04120 [nucl-th]

Chiral symmetry restoration (CSR) change the flavor decomposition — more s-sbar pairs produced.

Droplets of QGP allow to interact s-sbar quarks and create more multi-strange (anti)baryons.

- Presence of QGP significantly increase yield of Ω^+ at FAIR energy
- CSR effect increase yield of Ω^- and Ω^+ at FAIR energy

Performance of the CBM track finder

- For studies several theoretical models like UrQMD and PHSD are used.
- Track finder is based on the Cellular Automaton method.
- High efficiency for track reconstruction of more then 92%, including fast (more then 90%) and slow (more then 65%) secondary tracks.
- Time-based track finder is developed, efficiency is stable with respect to the interaction rate.
- Low level of split and wrongly reconstructed (ghost) tracks.

minimum bias: 6ms/core track finder, 1 ms/core particle finder

Particle identification with PID detectors

ToF: hadron identification

TRD: d-He separation

RICH: electron identification

PID detectors:

- ToF (Time of Filght) hadron identification;
- RICH (Ring Imaging CHerenkov detector) electron identification;
- TRD (Transition Radiation detector) electron and heavy fragments identification.

PID detectors of CBM will allow a clear identification of charged tracks.

KF Particle Finder for the CBM Experiment

More than 100 decays.

All decays are reconstructed in one go.

Based on the Kalman filter method - mathematically correct parameters and their errors.

Available in and approbated within STAR, ALICE, PANDA.

Strange particle reconstruction performance

5M central AuAu collisions 10AGeV/c

- CBM will allow clean reconstruction of rare strange probes with high efficiency and high statistics.
- Tools for the multi-differential physics analysis are prepared.

Strange particle reconstruction performance

- CBM will allow clean reconstruction of rare strange probes with high efficiency and high statistics.
- Tools for the multi-differential physics analysis are prepared.

5M central AuAu collisions 10AGeV/c Missing Mass Method

P.Kisel for (PWG "H")

- Σ + and Σ physics:
 - completes the picture of strangeness production: abundant particles, carry out large fraction of strange quarks;
 - reconstruction of resonances, like $\Lambda(1405)$;
 - reconstruction of hypothetic particles, like H-dybarion.
- Having high acceptance for Σ hyperons CBM is capable to reconstruct them by the **Missing Mass Method**.
- The method provides also independent way for reconstruction of Ξ and Ω hyperons, that will allow systematics study.

CBM KFParticle Finder @ STAR 4.4M Au+Au events sqrt(s) = 7.7

- CBM KF Particle Finder is successfully applied to the STAR data in a wide energy range.
- STAR data are excellent platform to test and improve our reconstruction software.

Hypernuclei production in A+A collisions

5M mbias events Au+Au at 10AGeV/c 50 sec at 0.1MHz IR (1.8 k/sec)

- A. Andronic et al., Phys. Lett. B697 (2011) 203
- According to the current theoretical predictions CBM will be able to perform comprehensive study of hypernuclei, including:
 - precise measurements of lifetime;
 - excitation functions;
 - flow.
- It has a huge potential to register and investigate double Λ hypernuclei.

Expected collection rate: $\sim 60^6$ He in 1 week at **10MHz IR** (not day-1)

DCM with CBM detector 5M mbias C + C collisions About 50 sec of data taking assuming 10⁵ IR

A.S.Botvina, K.K.Gudima, J.Pochodzalla. Production of hypernuclei in peripheral relativistic ion collisions. Phys. Rev. C , v. 88, p. 054605, 2013.

CBM KFParticle Finder – test: Hypernuclei Reconstruction @ STAR BES I Au+Au events 4.4M at sqrt(s) = 7.7 + 12M at sqrt(s) = 11 GeV

Team:
M. Zyzak
Yu. Fisyak
I. Vassiliev

Particle (mass MeV/c²)	Multiplicity central ev. 6 AGeV	Multiplicity central ev. 10 AGeV	decay mode	BR	ε (%)	yield in 90 days 6AGeV	yield in 90 days 10 AGeV	IR MHz
 Λ (1115)	4.6-10-4	0.034	_ pπ+	0.64	19.7	1.1·10 ⁷	8.3·10 ⁸	0.1
Ξ- (1321)	0.054	0.222	Λπ-	1	9.9	1.0·10 ⁹	4.3·10 ⁹	0.1
Ξ+ (1321)	3.0-10-5	5.4-10-4		1	8.7	5.0·10 ⁵	9.1·10 ⁶	0.1
Ω- (1672)	5.8-10-4	5.6·10 ⁻³	ΛK ⁻	0.68	4.4	3.4·10 ⁶	3.3·10 ⁷	0.1
Ω+ (1672)	-	7·10 ⁻⁵	⊼K+	0.68	3.9	0 (QGP?)	3.8·10 ⁵	0.1
³ _∧ H (2993)	4.2-10-2	3.8-10-2	³Heπ ⁻	0.25	12.7	2.7·10 ⁸	2.5·10 ⁸	0.1
⁴ _∧ He (3930)	2.4-10 ⁻³	1.9·10 ⁻³	³Hepπ⁻	0.32	11.4	1.7·10 ⁷	1.4·10 ⁷	0.1
⁵ _{ΛΛ} He(5047)		5.0-10-6	³ He2p2π	0.01	3	15	250	0.1
⁶ _{ΛΛ} He(5986)		1.0-10-7	⁴ He2p2π	0.01	1.2			0.1

Summary

- CBM detector is an excellent device to measure not only bulk observables, but strangeness, hypernuclei and other rare probes with high statistic.
- The CBM experiment will provide multidifferential high precision measurements of strange hadrons including multi-strange (anti)-hyperons.
- High precision measurements of excitation functions of multi-strange hyperons in A+A collision with different mass numbers A at SIS100 energies have a discovery potential to find a signal for the onset of deconfinement in QCD matter at high net-baryon densities
- The discovery of (double-) Λ hypernuclei and the determination of their lifetimes will provide information on the hyperon-nucleon and hyperon-hyperon interactions, which are essential ingredients for the understanding of the nuclear matter EoS at high densities, and, hence, of the structure of neutron stars.
- KF Particle Finder is successfully applied to the STAR data in a wide energy range.
- STAR data are excellent platform to test and improve our reconstruction software.
- Approbation with the real data allow to develop tools, which are complicate to develop with simulations.

CBM Collaboration: 64 Institutes, ~600 members

