Beam-beam effects in circular colliders

with strong emphasis on measurements, tools and methods

(derived from a CAS lecture)

1. Linear colliders (single pass, no damping ...)
2. Lepton colliders (multipass, damping)

3. Hadron colliders (multipass, ho damping)
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Beams in collision

beam-beam collision

Typically:
=’ 0.001% (or less) of particles have useful interactions

< 99.999% (or more) of particles are just perturbed

Note: typical numbers for hadron collisions, leptons a lot worse



Some challenges (beam-beam related, incomplete):

Circular colliders:

1. Beams are re-used - LHC: > 5. 10! beam-beam interactions per
production run (fill) =» challenge for the beam dynamics (many
different types of beam-beam effects to be understood and

controlled)
2. Must guarantee stability and beam quality for a long time

3. Particle distributions change as result of interaction (results in
time dependent forces ..)

4. One critical perfomance parameter: high luminosity !

Unfortunately, despite all progress not all aspects are well understood and
a general theory does not exist [1, 2].



NN N:N.
Luminosity: L= 41—2f”B = - 1N2fnp
O Oy m- 0.0,

High luminosity is not good for beam-beam effects ...
Beam-beam effects are not good for high luminosity ...

Menu:

==» Overview: which effects are important for present and future
machines (LEP, PEP, Tevatron, RHIC, LHC, FCC, linear colliders, ...)

== Qualitative and physical picture of the effects
Derivations in:

Proceedings, Advanced CAS, Trondheim (2013)
http://cern.ch/Werner.Herr/CAS2011_Chios/bb/bb1.pdf



Studying beam-beam effects - how to proceed

Need to know the forces

Apply concepts of non-linear dynamics

Apply concepts of multi-particle dynamics

Analytical models and simulation techniques well developed in
the last 20 years (but still a very active field of research)

LHC is a wonderful epitome as it exhibits many of the fea-
tures revealing beam-beam problems



First step: Fields and Forces

Need fields £ and B of opposing beam with a particle distribution
p(x,y,2)

In rest frame (denoted ') only electrostatic field: E’, and B =0

Derive potential U(x, y, z) from p and Poisson equation:

1
AU(x,y,7) = — G—p(x, ¥, 2)
0

The electrostatic fields become:

E = —VU(xy.2)

Transform into moving frame to get B and calculate Lorentz force



Example Gaussian distribution (a simplification !):

( ) NZe ( x? y? b )
P, y,3) = 3 eXp - - -
000, V27 207 203 207

For 2D case the potential becomes:

Ulx,y, o, 0y) = dq

NZ, e/oo exp(= 2<Tx+q 20

ameo \/ 202 + q)(203 + q)

Once known, can derive E and B fields and therefore forces

For arbitrary distribution (non-Gaussian): difficult (or impossible),
numerical solution required



Force for round Gaussian beams
Simplification 1: round beams =» o,=0,=0
Simplification 2: very relativistic = £ ~ 1

> One finds: Only components £, and By are non-zero

} Force has only radial component, i.e. depends only on

distance r from bunch centre where: > = x* + y?

For o, # o, the forces are more complicated:



ne X+ iy

E, = Im
26 \/277(0')25 ~02) \/2(0'2 - 07)

ne X+ 1y
E, = Re
\/2(02 )

26 \/ 2n(os — 07})
The function erf(t) is the complex error function

21 2
erf(t) = e {1 + — et dz]
\/_
The magnetic field components follow from:
B, = -B,E,/c and B, = B.E,/c

Ty Ox

\/ 202 - 02)

Assumption/simplification: we shall continue with round beams ...




The forces will result in a deflection: "beam-beam kick"
> We are careless® and use (7,7, x, x’,y,y") as coordinates

> We need the deflections (kicks Ax’, Ay’) of the particles:

Incoming particle (from left) deflected by force from opposite beam
(from right)

Deflection depends on the distance r to the centre of the fields

40ne should always use canonical variables, but here x, X’ more convenient




After a short calculation (integration along bunch):

Using the classical particle radius:

ro = e /4meymc?

we have (radial kick and in Cartesian coordinates):

. 2Nry r r’
Ar = — v -ﬁ-{l—exp(—ﬁ]

. 2Nry  x r?
Ax = — y ﬁ |:1—CXP(—2T‘_2 ]
Ay 2Nry y I — exp( r )

— — . - . — eX -
Y y 72 P 2072



Form of the kick (as function of amplitude)

beam-beam kick 1D

0.5+

0.5

kick

|
8 -6 -4

2 0 2 4
amplitude (units of beam size)

> For small amplitudes: linear force (like "beam-beam quadrupole™)

> For large amplitudes: very non-linear force



Can one quantify the beam-beam strength ?

Tune shift by the "beam-beam quadrupole™” may be a good indicator

- Use the slope of quadrupole force (kick Ar’) at zero amplitude
- This defines: beam-beam parameter ¢

- For head-on interactions (general case, hon round beams):

Note: it is independent of 5, important for (circular) colliders



some examples: LEP - LHC (most recent)

LEP (e"e”) LHC (pp) (2017)
Beam sizes ~ 200um - 4um ~11um - 11um
Intensity N 4.0 - 10''/bunch | 1.40 - 10'!/bunch
Energy 100 GeV 6500 GeV
€ * € ()20nm - 0.2nm | 0.4nm - 0.4 nm

B: - By (nominal) | () 1.25m - 0.05m | 0.30m - 0.30 m

Crossing angle 0.0 340 urad
Beam-beam 0.0700 0.0070
parameter(¢) (0.0037)

Unlike often assumed: Linear tune shift A 0,, from beam-beam interaction
proportional, but not equal to ¢



Still, how big is the tune shift for a given ¢

Take only the linear part ("beam-beam quadrupole™) and add to the
lattice

Transformation matrix of a thin quadrupole (beam-beam is really thin):

1 0
1

— 1
-f

For small amplitudes linear force like a quadrupole with focal length f
1 Ax  Nry {5-471]

fox Ty B




Use the "Full Turn Matrix" without beam-beam:

cos(2n(Q))  f"sin(2n(Q))
- ﬁi sin(2m(Q))  cos(2(Q))

Add "beam-beam thin lens", i.e. the (linear) beam-beam focusing:

cos(2rQ) B sin(27Q) 1 0
—é sin(2rQ)  cos(2rQ) ° —Lf 1

0

allow for a change of the tune Q and g in the resulting matrix:

cos(2n(Q+AQ)) B sin(2n(Q+AQ))
should become ( )

- ﬁl sin2m(Q+AQ))  cos(2n(Q+AQ))



Solving this equation gives us (like a "tuning quadrupole"):

k) k)

cos(2n(Q + AQ)) = cos(2nQ) — g—; sin(2rQ) and % = sin(2nQ)/ sin(2x(Q + AQ))
0

— g _ __sin@rQ) } _ 1
\1+4n¢ cot(2nQ)—4n2e?

By ~ sinn(Q+AQ))

At a "real"” quadrupole: 5 at quadrupole changes slightly, (usually
assumed constant)

At beam-beam interaction:

Both AQ and 5 depend also on ¢ and tune Q (must not be ignored)

[ can become significantly smaller or larger at interaction point

This is called "Dynamic g"



beam-beam tune shift versus tune

0.0¢- —

0.023 -
&= 0.01

&= 0.0045 J

delta Q
R

LEP working point, close to integer (vertical plane):
AQ, decreased: 0.07 — ~ 0.04 !

[ decreased: 5cm — =~ 2.5-2.8cm (Luminosity!)

LHC working point, far from integer:
AQ ~ &  Weaker effectson g =



0.65%

beta x [m]

0.5%

0.45- ' !

proton-proton

13329 13329.1 13329.2

Dynamic 8 in LHC, computed for pp and pp

13329.3
s [m]

(with standard LHC parameters)

B 0.55m = 0.52m

proton-antiproton




beam-beam linear tune shift in working diagramm

> Start with standard working
point, no beam-beam

» With beam-beam: Tune shift in
both planes

» LHC (equally charged beams)
Tune shift is negative (pp)

Whole beam moves to new tune

0.311

031

Qy

0.309 -

0.308 -

0.307 [

0.306 |

0.305

Linear tune shift

0275 0276 0277

0278 0.279
Ox

0.28

LHC is/was round (in most hadron colliders) = equal tune change in

both planes

Usually not the case for leptons

0.281



Non-linear force: Amplitude detuning

Detuning with amplitude - round beams

» A Q depends on normalized am- g”
plitude « in units of beam size N it

> Different particles have different _g“'
tunes 506

3
> Largest effect for small ampli- 0"/
tudes (AQ =~ &) g

v

0

linear only

4
=> with o= = weget: AQ/é=— [1-I(=) ¢ 4
o a 4

8 10

2 4 6
amplitude in units of beam size 0l



Non-Linear tune shift (two dimensions)

Tune footprint for head-on collision

. . 0.311
» Start with standard working
; 0.31] X
point o 09 oo
» Tunes depend on x and y ampli- 0.309) o
tudes 0.308
» No single tune in the beam: 2307|
Tunes are "spread out" 0306l 0
Point becomes a footprint 0305 o
0275 0276 0277 0278 0279 028 07281

Ox

More complicated in case of unequal beams

Total tune spread is ~ 0.004 (one IP) ! Are we worried ??



First some slang: weak-strong and strong-strong

Both beams are very strong (strong-strong):

> Both beam are affected and change during a beam-beam
interaction:

Beam 1 changes beam 2, beam 2 changes beam 1 =—»
beam-beam effects change every time the beams "meet"”

» Examples: LHC, LEP, RHIC, ... (FCC ?)

> Evaluation of effects challenging (need to be self-consistent)

One beam much stronger (weak-strong):

> Only the weak beam is affected and changed due to beam-beam
interaction

» Examples: SPS collider, Tevatron, ...



weak-strong beam-beam collision

A

Counter-rotating beam unaffected and treated as a static field

Equivalent to treat single particles, tracking etc.
this is usually done to study single particle stability



weak-strong beam-beam collision

strong weak

1
-10 -5 (0] 5 10

Counter-rotating beam unaffected and treated as a static field

Weak beam can be strongly perturbed or destroyed

Note: unequal beam sizes also dangerous (e.g. SPS collider)



strong-strong beam-beam collision

1 1 1
-10 -5 (0] 5 10

Both beams are (maybe heavily) distorted or destroyed
Size, shape, density, (losses ?) ...

Always treat both beams - not particles (self-consistently)
In tracking studies usually ignored (but check)

Important for coherent effects and LHC beams



How to get it self-consistent, one has to consider the change of beam size
and particle distribution:

1. Simulation
- Multi-particle tracking

- Gives desired results, but requires computing resources and very
careful analysis (hnumerical problems, intelligent choice of field
solver (!), ...)

2. As complement: coupled Viasov equations

- Usually difficult to solve analytically, need perturbative treatment,
but still ...

- Just a sketch used for LHC coherent effects



First we consider head-on collision of one bunch per beam « and »

Particle distributions y“ and y/” mutually changed by interaction (by
the "other parts™)

Interaction depends on particle distributions
- Beam y“ solution depends on beam i/’

- Beam ¢’ solution depends on beam i

Can one find a self-consistent solution ?

What is the equation of motion ?

== For distribution function: Vlasov equation

W N’ + f ceawa
— ~YxPx—q or
ar PPy Op-




_ oy oyt Op, o
for beam a: el qxPx I + ( 5 )3px
dy - / I ACIO AN
= - — X+ 0,()-4-7E, p-V. d

- =
Vo

force from beam b on beam a

p’(x;1) = / U (x, pes Hdp,

The same thing for beam /: two coupled differential equations for
beam distributions v“(x, p,) and v (x, p,)

Normally cannot find exact solution, numerical solutions required,
powerful methods exist (examples in backup slides and details in [3])

Fortunately: most important only for coherent beam-beam effects, can
often be ignored otherwise (Yokoya, 1990)




- Without beam-beam
- All particle have the same tune

(all on circles)

- With (head-on) beam-beam
- Tune depends on amplitude

- For some amplitudes they are on
resonances

px

Horizontal Phase Space

Horizontal Phase Space




Can one reconstruct the phase space ?

A powerful technique, heavily used to analyse LHC beam-beam problems:
Lie transformation based on a Hamiltonian treatment followed by a normal
form analysis. Without derivation (short computation in back-up slides, all
details see e.g. [3]) one gets for the "effective Hamiltonian" /:

no beam—-beam

—— 1 P
h = -uJ + cu(J) -inu - . et
H (Z ) -im - )

n

or (c, are Fourier components of the force, see backup slides):

b= —ul+ <ch(1) Ny e(in\lfﬂ%))

2sin(%%)

the tune shift with amplitude follows immediately with:

1 dco(J)
M) = = C‘;]

(J is now action variable)

Note: once you have /2 you have (almost) everything (see [3])




Invariant from tracking: Poincaré section of one IP

X Qx=0.31 X Qx=0.31
. T 127 ) "
.. =502
[ ] n " . .
12.65 ] _ 501
12.6 o . . o . : .
B RS S S T AL
. . .
12.55 199 -
| | | o o 49,8
15 -1 -05 05 1 15 Y+m2

=p Phase space (action-angle) coordinates plotted each turn
= Shown for particle amplitudes of 50, and 100,

Without beam-beam: a straight line



Invariant versus tracking: one IP

Ix x =0.31 | X Qx =0. 31
12. 7}

50. 2;

50. 1;

y+r/2

=» Shown for particle amplitudes of 50, and 100,
one can reproduce and analyse the motion ...

works also for more than one interaction point (see backup
slides), for LHC we treat up to 124 interactions per turn



Problems with hadron machines

> Hadron (e.g. protons) machines have no or very little damping

No equilibrium emittance - no hard beam-beam limit (unlike lepton
colliders and common believe) just gets worse and worse ...

» Very hard to exceed 0.01

> Losses or lifetime extremely hard (zzz) to predict, a prediction within
a factor 2 is pretty good ..



The next problem

— = NNy f - np

dro oy
How to collide many bunches (for high 1) ??

Must avoid unwanted collisions !!

Separation of the beams:
= "Pretzel” scheme (SPS ,LEP, Tevatron, Cornell)
== Bunch trains (LEP,PEP, ...)

==» Choose Crossing angle for LHC



Two beams, 2808 bunches each, every 25 ns In common part of the
chamber around the 4 experiments

N

Y/

120 m

Beams have to exchange between inner and outer beam pipes
Over 120 m: about 30 parasitic interactions
Four IPs: a total of 124 beam-beam interactions !!

Need local separation: Established with 2 horizontal and 2 vertical
crossings



Crossing angles (example LHC)

\\Ijlead-on
Long-range *

Beams separated, but still same vacuum chamber
Particles experience distant (weak) forces

Separation typically 6 - 12 o (note: beam size growths linearly with
distance to collision point, so does the separation with the crossing
angle)

=P We get so-called long range interactions



What is special about them ?

In addition to the head-on effects:

> Break symmetry between planes, stronger resonance excitation

> Mostly affect particles at large amplitudes, i.e. the ones we expect to
loose

> Cause effects on closed orbit, tune, chromaticity, .. (to come)
» Special case: PACMAN effects
> Tune shift has opposite sign in plane of separation

e.g. case with a horizontal crossing angle (LHC):

Horizontal tune shift positive, vertical tune shift negative



Why opposite tune shift ???

What do the particles "see":

beam-beam kick 1D

kick

amplitude

> What counts: local slope has opposite sign for large separation

oscillation now not around the centre, but around the separated orbit

> Opposite sign for focusing in plane of separation !



Quantitatively: Long range kick

/
[AX step
s
\

= Modified "kick" with horizontal separation d:

AxX' (x+d,y,r) = —

r? 20

(with: 72 = (x+d)* + y?)

2Nry (x+d) ll_exp(_ 2 ]
2

Red flag: to use this expression, e.g. in a simulation, there is a small
complication, was used incorrectly in the past (before 1990 and in Chao
Handbook), if interested ask offline




footprint from long range interactions

- Tune shift large for largest ampli- e | | | | |
tudes (where non-linearities are Qy |
strong)
- Size proportional to 1 0.31
d2
- We should expect problems at
small separation m
- Footprint is very asymmetric 0.308 1 1 1 1 1

0275 0276 0277 0278 0.279  0.28 0.281
Ox

One observes a "folding" (can easily be understood from the picture)

For small separation, the size of the footprint can be large =» particle
losses



Tune footprint, head-on and long range
0.316 T T T T T T

- Compare foot print for different vericalseperation
- - 0314 B
contributions o

- Seem to be totally separated ]

031

- For horizontal and vertical sepa-
ration go opposite directions

0.308

0.306

0304 | \
2 head-on horizontal separation

0302 1 1 1 1 1 1
0272 0274 0276 0278 028 0282 0284 0286
Ox

Can one take advantage of that ??

(Note: a second head-on collision just doubles the size of the footprint)



Two interaction points:

Two head-on footprints
Horizontal long range

Vertical long range

Symmetric

Tune footprint, combined head-on and long range
0.316 T T T T T T

0.314 +

Qy

0312 1

031 ¢

0.308 [

0.306 -

0.304 1

0.302

0272 0274 0276 0278 028 0282 0284  0.286
Ox

Alternating (i.e. one vertical and horizontal each), implemented in the
LHC, tune spread around 0.01 ! and it works ...

Seems to get some compensation, i.e. overall footprint slightly

decreased and is symmetric

Looks like a very minor improvement, but see later



Small crossing angle < small separation < big problem ?

Stable region (a.k.a Dynamic
Aperture) versus separation in
units of beam size o

[N
~
T

[N
)
T

=
o
T

(from simulations) h

| comfort zone

e | ........................................................
6F I i
Minimum separation for LHC: o |

~ 10 o (design value) 1 |

stable region (sigma)

20

5 separatiolr% d (sigma) °

For too small separation: particles may be lost and/or bad liftime



More jargon: PACMAN bunches

ﬁtl ﬁtz ﬂt3 At

:ﬂtl B bunches missiog
At 5 38 bunches missing
At 3 39 bunches missing
H H :ﬂtq_ 119 bunches missing
7 bunches total number of bunches: 2208

e Trains not continuous: gaps for injection, extraction, dump ..

e Nominal 2808 of 3564 possible bunches, optimized now



Trains for beam 1 and beam 2 are symmetric:

At interaction point:
bunch 1 meets bunch 1, bunch 2 meets bunch 2, etc.

hole 1 meets hole 1, hole 2 meets hole 2, etc.

But not always ...



Long-range S

What we want ...



Long-range ==

What we get ... (because of the gaps)

“ \\\Head-on i 'f



“ \!—|ead-0n ’,
Long-range x
= \‘

e Some Bunches meet holes (at beginning and end of batch)

e Cannot be avoided

e Worst case: less than half of long range collisions (depends on
collision scheme and gaps)



When a bunch meets a "hole":

— Miss some long range interactions =—> PACMAN bunches
— They see fewer unwanted interactions in total
— Different integrated beam-beam effect

— Long range effects for different bunches will be different:

= Different tune, chromaticity, orbit ...

— May be more difficult to optimize

Note: this case is specific LHC, but something similar happens in
other machines in some form ..



Example: tune along the train, two horizontal (H + H) crossings

0.284 -

0.28B —

0.28p = - i

0.281+ -+ - -
-+ -+
++++++++++

0.2 + -

0.27p" -

pacman pacman
0.27F -1

0.27p —

0.27

Horizontal tune along bunch train (computed, all bunches assumed
equal)

Tune spread between bunches rather large (>~ 0.0025), effects add up
for several crossings

Too large (A QO ~ 0.01) for 4 IPs



Example: tune along the train, alternating (H + V) crossings

0.278B -
0.27FF -
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

0.276 —

0.27p —

0.274 1 1 1 1 1 1 1
o 10 20 30 40 50 60 70 80

Horizontal tune along bunch train (computed)

Tune spread has disappeared due to compensation by alternating
crossings (1 horizontal and 1 vertical)

This is the real reason for alternating crossings in the LHC !



PACMANS can be measured (without compensation):

Integrated losses during scan in IP1
2e+1@ T T T T T

40 %

1.8e+10-

1.6e+10-

1.4e+106-

1.2e+10¢

le+10—

8e+09

Integrated losses

6e+09

4e+0P

2e+09

time (min)

Recent measurement: Separation (crossing angle) slowly decreased from
120to4d4 0

Bunches with more long range collisions suffer first



Closed orbit effects

Starting from the kick Ax’ for long range interactions:

2Nrg (x+d) ll—exp(— 2 ]

72

2072

AxX'(x+d,y,r) = —

For well separated beams (d > o) the force (kick) has an
amplitude independent contribution:?

A,_COnst. 1 x+0x_2 N
X = 7 7 7

4This is one of the the complications mentioned before ...



This constant and amplitude independent kick changes the orbit !

Has been observed in LEP with bunch trains (and was bad)

So should be evaluated by computation, however:
Change of orbit =—» change of separation =—» change of orbit ...

Change of tune = change of separation =—» change of tune ...

All PACMAN bunches will be on different orbits

In LEP: 8 bunches, in LHC: 2808 bunches
Requires the self-consistent computation of 5616 orbit !

(first time done in 2001, calculation took 45 minutes for equal
bunches, can handle unequal bunches as well)



PACMAN Orbit effects: calculation

Vertical offset (mum)

o

a

' vertical offse't 1P -+

3 —
2~ —

+
i x
+

1 1 1 1 1 1 1
(@] 500 1000 1500 2000 2500 3000 3500
bunch Nnumber

Predicted orbits from self-consistent computation

Vertical offset expected at collision points, sizeable with respect to
beam size, loss of luminosity: for smaller 5* it gets worse and worse

Does it have anything to do with reality ?

Cannot be resolved with beam position measurement, but ..



2011-07-05

Luminous Centroid Y Position [mr

1.088

1.086

1.084

1.082

PACMAN Orbit effects: measurement

file:///afs/cern.ch/user/z/zwe/Desktop/PNG/bcid_vs posY_pm_posYErr.png #1

— ATLAS Operations ]

— May 29 2011 \s=7TeV —

[ LHCFill: 1815 Online Primary Vertex =gl

4 J i K —
50[} 1000 1500 200[} 25['}0 3[}00 3500

==» Measured vertex centroid in ATLAS detector

== Very good agreement with computation

Bunch Crossing Identifier



Coherent beam-beam effect (very short)

AX

When bunches are well separated:

All particles in a bunch "see" the same kick
Whole bunch sees a kick as an entity (coherent kick)

The coherent kick of separated beams can excite coherent dipole
oscillations

All bunches couple because each bunch "sees many opposing
bunches: many coherent modes possible !



When bunches are separated much less than one o (quasi head-on
interactions):

Remember orbit kick =» all particles "see" the same kick

other parts

const.

Ax = : 1 —

There is "one part” of the kick that is the same for all particles

This part also excites dipolar oscillations

There are "other parts™ which are different for the particles

These parts can change the particle distribution




Simplest case - one bunch per beam:

> l |
. v O-mode
t | -—
v v N TT-mode
[ — — |
TURN N TURN Nn+1

Coherent modes: two bunches are "locked" in a coherent oscillation,
turn by turn, can be either:

Two bunches oscillate "in phase': 0-mode
Two bunches oscillate "out of phase": 7-mode
0-mode has no tune shift and is stable

m-mode has large tune shift and can be unstable



What was measured: LEP

0.01%

'Q_FFT_TfsQ2_99_10_19:067—26_25'u 2:4

1 1 T O e
e | e | e R

o T oo = hthiistlh h i - - i’ )i i e e: . i I-H

Lo e o S S

0.008 i b

H H H H H H H H H H H H H H H H H H H
0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4
Qx

l M
0: 0.28 m: 0.34

Both modes clearly visible - they are real !

History: first seen at DESY (A. Piwinski), detailed calculation by Yokoya
(1990)
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How to deal with the problems ?

Every "Coherent Motion" requires ’organized’ motion of many/all
particles

Requires a "high degree of symmetry" (between the beams)

Possible countermeasure break the symmetry e.q. by:

- Different bunch intensity
(results in different tune shifts for the two beams)
- Different nominal tunes of the two beams

> Increasing differences: Y becomes smaller and smaller and 7-mode
is Landau damped

> LHC: not seen, beams and collisions scheme not symmetric enough
and m-mode is Landau damped



More on Landau damping - here head tail modes
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- Stabilization of collective instabilities with colliding beams

- (Head-on) collisions for identical tune spread much more efficient
than octupoles for Landau damping, in particular for high energies®

LHC beams rather unstable during adjustent, new procedures
proposed and evaluated

==p Beam-beam collisions save the day for the LHC !

4see e.g. W.Herr, "Landau Damping", in Proceedings CAS Trondheim (2013)



Wrap up |

- Beam-beam interaction the largest complication for beam dynamics
in colliders

- Many different effects have to be considered and evaluated

- A full theory does not (yet) exist, but enormous progress in last 25
years, mostly due to :

Experience from previous hadron colliders (SPS, Tevatron, LEP)

LHC: Experimental evidence and operational experience

Needs to design the LHC and to study the various complications,
not present in previous colliders, requiring to enter uncharted
territories

Resulting in the development of novel tools and methods



Wrap up |l

A proper evaluation depends on powerful tools, many of them developped
for nonlinear beam dynamis, beam-beam and other applications:

*

Lie methods and normal form analysis

Simulation tools, not mentioned, e.g. PIC codes, FMM (recent, vital for
Long Range calculations), for field calculations)

Numerical solvers for Vlasov equation
Not treated (see e.g. [3]), symplectic integrators

Not treated (see e.g. [3]), but very powerful:
Truncated Power Series Algebra (TPSA) based on Differential Algebra
for exact calculation of derivatives

Foreseen: Integer Algebra for exact long term tracking

If interested: attend the topical CAS course on "Numerical Methods for
Accelerators”, 11. - 23. November 2018 in Thessaloniki



BACKUP SLIDES 2



= Kick (Ar’): angle by which the particle is deflected radially during the
passage through the bunch

==» Forces are different along the bunch: integration of force over the
collision, i.e. duration of passage Ar (assuming: m;=m, and Z,=—2,=

1):

At

1 2
Newton’s law : Ar = / F.(r, s, t)dt
mefy |-y

with:

2 2 2 2
Frsp=—ed+h) [1 —exp(——— ] - [eXp(—(S+w) )}

v/ 2r)3eyro 20 207

Assumption: longitudinal density distribution is Gaussian with o



Hamiltonian for beam-beam interaction

The Hamiltonian for a linear one turn map is:

2
f2 — _g<% +18px>

If F(x) is the potential for the beam-beam force, the non-linear map with
beam-beam is written (as a Lie transformation:

et = e:fzz el
where 7 is the wanted overall effective Hamiltonian and

Jfx) = 2o (1 — e%) =P F(x) = /xf(u)du
yX 0

Transforming to action/angle variables J and @ as:

|2J
X = /2JBsin®, p, = FCOS(D




The potential F(x) can be written as a Fourier series:

F(x) = Z coc, (J)e™®

n=—oo

where

1 2w '
c,(J) = —/ e " F(x) dd
27T 0

For the standard formalism to compute the effective Hamiltonian /. see [3].



Tools and methods:

Analysis and purpose:
& Evaluate stability of solution
& Calculate frequency spectra of oscillations
& lIdentify discrete spectral lines of oscillations
Tools:
£ Numerical integration of Vlasov equation
% Multi-particle and multi-bunch tracking

% Perturbation theory



Numerical integration
& Vliasov equation is Partial Differential Equation
£ Aim: find distribution and its time evolution
& Use: numerical integration with Finite Difference Methods

£ Basic concept:
— Replace derivative by finite differences

— Represent continuous function y(x, r) by two-dimensional
grid u’ (t > n, x — j)



Example 1:

ou 5%u

~=Ades. uxr=0)= u) = f(x)  becomes :
X
n+tl _ _n n _ n n
At Ax?
AAt
n+l _ n n.o_ 90N n

spacial step Ax: x; =j - Ax
time step Arfort: 1, =n - At

initial distribution: u? = f(x))



Example 2:

6°u 56U

_ _ _ 0 _ .
== = A e u(x,t=0)=u; = f(x) becomes :
n+1 n n
uit = 2uh + U _ P Wi —2u +ul
A2 Ax?
. ANt AAt
— J+1 2(1_(A_x> )u +(Ax> (uj+1+l/t )—u -1
Exercise — try to solve:
u 6
— = 4_u O<x<1, u(x0)=sin(mx)

ot2 ox2’



Strategy for numerical integration
& Use finite difference scheme

#® Back to our problem which looks like (per beam):

W (x, py; 1) W (x, py; 1) W (x, py; 1)
= —A A — B X ’
oy (x; 1) . (Px) I
«#® In each substep integrate in one direction (operator splitting):
Y (x, px; 1) O (x, px; 1)
= —A(x;t
oy (x5 1) .
W (x, py; 1) W (x, py; 1)
= —B(p,
ot (Px) ox

& Discretise y/(x, p,;t) on the grid (i,j,n): U i (n = t/At)



Grid calculations:

Each substep equation is of the type: ‘;—”; = ﬂ%
with: f(u) = A(x) - u

® u; is the discretisation at time 7 = nAt of the density y(x, p,; 1)
for x =iAxand y = jAp,

& Use the Lax-Wendroff scheme which looks like (e.g. first

half-step in j-direction):

At
Ap,

nel2 o A1) At
u.. =Uu.. —
1 13 2 Apx

| 2
(U — U )+ 5 (A(x; ) ) (U — 2u; + Ui )

Exercise — try to derive (hint: Taylor expansion of u in t)



Grid calculations:

& Putting it all together with f = A(x)u and a similar half-step for

g = B(p,)u (now going the i-direction) one gets
n ”+% n+

1

£ Small complication: in presence of discontinuities this method
may generate oscillations

£ Remedy: introduce artificial 'viscosity’



Strategy for simulations
& Represent bunches by macro particles (10%)
& Track each particle individually around machine

% At interaction points evaluate force from other beam on each
particle (that is where space charge effects are treated similar)

% In principle: for each particle in beam a calculate the integral
over p’(x', 1)

% In practice not possible, unless one makes assumptions (e.g.
Gaussian beams etc.), need other techniques



FIELD COMPUTATION

Solve Poisson equation for potential ®(x, y) with charge
distribution p(x, y):

0 &
O =2
( 2 T ay2> (X, y) (X, y)

formally possible with Green’s function:
D(x,y) = / G(x—x",y—y)olx,y)dx'dy

and (for open boundary):

1
Glx = x',y=y) = —5Inl(x - XY+ -y



Techniques for field (force) calculation

& Soft Gaussian approximation: Assume Gaussian distribution
with varying centre and width (fast but not precise, but o.k. for
incoherent studies)

& Particle-particle methods: (precise but slow, typical: N = 10%)

& Particle-mesh methods: evaluate field on a finite mesh
(precise, but slow for separated beams)

&% Hybrid Fast Multipole Methods (HFMM): recent method,
precise and much better for separated beams and beam halos



PARTICLE-PARTICLE METHODS (PP)

& Simple: accumulate forces by finding the force F(i,j) between
particle i and particle j

© Problem: computational cost is O(V)
© For our problems typically N, > 10*
& Used sometimes in astrophysics

©® For N, < 10° and for close range dynamics good



PARTICLE-MESH METHODS (PM)

£ Approximate force as field quantity on a mesh.

£ Differential operators are replaced by finite difference

approximations.

Particles (i.e. charges) are assigned to nearby mesh points
(various methods).

Problems:

% Computational cost is O(N,In(N,))

£ Bad to study close encounters

& Not ideal when mesh is largely empty (e.g. long range
interactions)



PARTICLE-MESH METHODS

£ Main steps:
& Assign charges to mesh points (NG, TSC, CIC)
&£ Solve field equation on the mesh (many variants)
«® Calculate force from mesh defined potential

% Interpolate force on grid (N, - N,) to find force on particle



PARTICLE ASSIGNMENT METHODS

£ NGP: (Nearest Grid Point), densities at mesh points are
assigned by the total amount of charge surrounding the grid
point, divided by the cell volume. Drawback are discontinuous
forces.

#® CIC: (Cloud in cell), involve 2% nearest neighbours, (K =
dimension of the problem), give continuous forces.

& TSC: (Triangular Shaped Cloud), use assignment interpolation
function that is piecewise quadratic.



IN PRACTICE ...

& Must look at:
& Stability
& Noise reduction (short scale fluctuations due to granularity)
£ Number of particles
& Size of grid cells
© ...



A MORE RECENT APPROACH
& Fast Multipole Method (FMM)

& Derived from particle-particle methods, i.e. particles are not on
a grid

&£ Tree code: treat far-field and short-field effects separately
£ Relies on composing multipole expansions

% Computing cost: between O(V,) and O(N,In(N,))



Fast Multipole Method

£ Well-known multipole expansion at point P for k£ point charges
qi-

D7) = ZZ .o

=0 m=

with : Z q,a i, Bi)



& Order determined by desired accuracy



FMM PROCEDURE

Hierarchical spatial decomposition into small cells and
sub-cells (e.g. quad-tree)

Multipole expansion for each sub-cell

Expansions in cells are combined to represent effect of larger
and larger groups of particles

A 'calculus’ is defined to relocate and combine multipole
expansion

Far-field effects are combined with near-field effects to give
potential (and field) at every particle



QUAD-TREE DIVISION

QUAD TREE

Icdea: Build a free by breaking the points according to
one of the coordinates.

B s v s

Chuad — tree:
Partitdon in both
dimensions
simultenously




A VARIATION: HFMM
&% Hybrid Fast Multipole Method: FMM with a grid

& Assign particles on a grid, use FMM to calculate fields at grid
points

& Particles may or may not be assigned to a grid
& Particle outside the grid are treated with standard FMM

#® Precision is excellent and O(V,) when all particles are on the
grid

® |deal for separated beams



Is a Gaussian good enough ??
(or: why all this effort ?)



oherentmodespectrumsoftGaussianapproach

oherentmodesybridFastMultipoleMethod




& Factor is 1.1 (and not 1.214)
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& "Skewness" important !
&£ Mostly core participates in oscillation

& Exercise: why does that change the frequency ?



Strategy of perturbation theory
®© Ji(x, peit) = Yg + Yo(x, pit)
% Gotol, and ¢, (action and angle)

& Fourier expansion:
Yol pxst) = 3, exp(im ¢, — vi) - T2 . fa(l)

© In Viasov equation: i2f = £-A- f
® With £ = (7%, ) and f ~ exp(—£€ A1)
& Eigenvalues of 1 f = A f related to mode frequencies

«® Can obtain eigenmodes ¢ (., ¢x; 1)



