Are heavy r-process elements produced only in neutron-star mergers?

One year after gravitational wave detection GW170817

1 H																2 He		
3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne	
11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 CI	18 Ar	
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr	
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe	
55 Cs	56 Ba	*	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn	
87 Fr	88 Ra	**	104 Rf	105 Db	106 Sg	107 Bh		109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Uuq	115 Uup	116 Uuh	117 Uus	118 Uuo	
119 Uun																		
* Lanthanides			des	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
** Actinides				89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

after Big Bang

Stars build elements up to iron group

Massive stars: 8 M_☉ < M ≤ 70 M_☉

 $(M_{\odot}=1.99 \times 10^{30} \text{ kg})$

Hydrostatic burning stages

Final stage: iron core

No more energy gain from fusion

How were the elements from iron to uranium made?

s-process and r-process

slow and rapid neutron capture compared to beta decay

neutron capture (n, γ): (Z,A) + n \rightarrow (Z,A+1) + γ

beta decay: $(Z,A) \rightarrow (Z+1,A)$

r-process

Rapid neutron capture compared to beta decay

Neutron density: $N_n \sim 10^{27} - 10^{20} \text{ cm}^{-3}$ Temperature: $T \sim 10^{10} - 10^8 \text{ K}$ 68 **Protons** Neutron capture Stable nuclei nuclei in lab r-process path 86 88 90 **Neutrons**

Solar system abundances

Solar photosphere and meteorites: chemical signature of gas cloud where the Sun formed

Contribution of all nucleosynthesis processes

Where does the r-process occur?

rapid process → explosions high neutron densities → neutron stars

Core-collapse supernovae

Cas A (Chandra X-Ray observatory)

Neutron star mergers

Galactic chemical evolution

First stars: H, He —— Heavy elements —— New generation of stars

ESO PR Photo 21/6/02 (50 Datober 2002)

OEuropear Southern Chrematon

The very metal-deficient star HE 0107-5240 (Hamburg-ESO survey)

Trends with metallicity

Fingerprint of the r-process

Oldest observed stars

Solar system abundances

HD 221170: Ivans et al. (2006)
 HE 1523-0901: Frebel et al. (2007)

GW170817

Kilonova

Kilonova

R-process in neutron star mergers confirmed by kilonova (radioactive decay of n-rich nuclei) after gravitational wave detection from GW170817

Li & Paczynski (1998)

Neutron star mergers

t: 1.15e+00 s / T: 0.56 GK / ρ_b : 3.98e+02 g/cm³ 10^{0} T (GK) 10.0 100 1.0 0.1 10^{-5} Pb (Z=82 80 10^{12} 10^{0} 10^{8} 10^{4} proton number, Z ρ (g cm⁻³) 184 60 Sn (Z=50) robust r-process 40 Ni (Z=28) 20 50 10⁻⁷ 28 50 100 neutron nun 170 190 200 180 210 160 120 140 150 130 Korobkin et al. 2012 Mass number A

Ejecta and nucleosynthesis

Neutron star mergers: neutrino-driven wind

3D simulations after merger disk and neutrino-wind evolution neutrino emission and absorption Nucleosynthesis: 17 000 tracers

Martin et al. (2015)

see also Fernandez & Metzger 2013, Metzger & Fernandez 2014, Just et al. 2014, Sekiguchi et al.

Kilonova

Martin et al. (2015)

Equation of state and neutrinos

GR simulations: different EoS (Bovard et al. 2017) impact of neutrinos (Martin et al. 2018)

How were the elements from iron to uranium made?

R-process in neutron star mergers

Are we done? No

- GCE points to more contributions
- Nuclear physics of extreme neutron-rich nuclei

Trends with metallicity

Galactic chemical evolution

Scatter at low metallicities: rare event, Eu ejected early Eu/Fe drops around [Fe/H]~-1: most of Eu should be ejected before sn la

Côté et al. 2018 (to be submitted)

Core-collapse supernovae

Standard **neutrino-driven supernova**: Weak r-process and vp-process Elements up to ~Ag

Neutrino-driven winds

neutrons and protons form α-particles α-particles recombine into seed nuclei

NSE \rightarrow charged particle reactions / α -process

$$T = 10 - 8 GK$$

→ r-processweak r-processvp-process

T < 3 GK

Neutrino-driven wind parameters

r-process \Rightarrow high neutron-to-seed ratio (Y_n/Y_{seed}~100)

- Short expansion time scale: inhibit α-process and formation of seed nuclei
- High entropy: photons dissociate seed nuclei into nucleons
- Electron fraction: Y_e<0.5

Arcones & Thielemann (2013)

Conditions are not realized in hydrodynamic simulations (Arcones et al. 2007, Fischer et al. 2010, Hüdepohl et al. 2010, Roberts et al. 2010, Arcones & Janka 2011, ...)

$$S_{wind} = 50 - 120 \text{ k}_{B}/\text{nuc}$$

 $\tau = \text{few ms}$
 $Y_{e} \approx 0.4 - 0.6?$

Additional ingredients:

wind termination, extra energy source, rotation and magnetic fields, neutrino oscillations

Lighter heavy elements in neutrino-driven winds

Observation pattern reproduced!

Production of p-nuclei

weak r-process

Overproduction at A=90, magic neutron number N=50 (Hoffman et al. 1996) suggests: only a fraction of neutron-rich ejecta

(Arcones & Montes, 2011)

Origin of elements from Sr to Ag

Astrophysical site

Nucleosynthesis: identify key reactions

Chemical evolution

Impact of astrophysical uncertainties

Steady-state model to explore possible nucleosynthesis patterns in neutrino-driven ejecta

Nucleosynthesis ~3000 trajectories

Input parameters: M_{ns}, R_{ns}, Y_e

Bliss, Witt, Arcones, Montes, Pereira (2018)

Characteristic nucleosynthesis patterns

binding energies partition functions

Q-values of (α,n) reactions

Individual reactions

10 15 20 25 30

Atomic number Z

Bliss, Witt, Arcones, Montes, Pereira (2018)

Provide representative trajectories to explore impact of nuclear physics input (nuc-astro.eu)

Reactions in neutrino-driven supernova ejecta

- Important reactions: α-, n-, p-capture reactions, β-decays
- $\tau_{\text{expansion}} << \tau_{\beta} \rightarrow (\alpha, n)$ are key reactions
- **Q-process** (Hoffman & Woosley 1992)
- Absence of relevant experiments
 - → theoretical reaction rates based on Hauser-Feshbach model

J. Bliss, A. Arcones, F. Montes, and J. Pereira (2017)

(a,n) reactions: sensitivity study

- Independently vary each (α,n) rate between Fe and Rh by a random factor
- Identification of key reactions → large correlation and abundance change
- 82Ge, 84,85Se, 85Br(α,n) strongly affect abundance of Z=36–39
- Measurement of key (α,n) reactions to reduce nuclear physics uncertainties:
 - \rightarrow 75Ga(α ,n) and 85Br(α ,n) at ReA3 (NSCL/MSU)
 - → need more experiments

J. Bliss, A. Arcones, F. Montes, and J. Pereira in preparation

Core-collapse supernovae

Standard **neutrino-driven supernova**: Weak r-process and vp-process Elements up to ~Ag

Magneto-rotational supernovae

Neutron-rich matter ejected by strong magnetic field (Cameron 2003, Nishimura et al. 2006)

2D and 3D + parametric neutrino treatment :

- jet-like explosion: heavy r-process
- magnetic field vs. neutrinos: weak r-process

Nishimura et al. 2015, 2017, Winteler et al. 2012, Mösta et al. 2018

Magneto-rotational supernovae: r-process

Neutron-rich matter ejected by strong magnetic field (Cameron 2003, Nishimura et al. 2006)

2D, parametric neutrino treatment (Nishimura et al. 2015, 2017) magnetic field vs. neutrinos

Magneto-rotational supernovae: r-process

3D, leakage (Winteler et al. 2012, Mösta et al. 2017)

- jet-like explosion, heavy r-process:
 strong magnetic field (10¹³G) or symmetry (~2D), 10¹²G
- Weak r-process: 3D, 10¹²G

Magneto-rotational supernovae: r-process

Neutrinos and late evolution are important

Martin Obergaulinger: 2D, M1, ~1-2s

Progenitor: 35 M_{sun}

Obergaulinger & Aloy (2017)

Impact of rotation and magnetic field

RO: progenitor RRW: weak mag. field strong rot.

RW: weak mag. field

RS: strong mag. field

Nuclear physics input

nuclear masses, beta decay, reaction rates (neutron capture), fission

Erler et al. (2012)

Nuclear masses

Abundances based on density functional theory

- six sets of different parametrisation (Erler et al. 2012)
- two realistic astrophysical scenarios: jet-like sn and neutron star mergers

Martin, Arcones, Nazarewicz, Olsen (2016)

First systematic uncertainty band for r-process abundances

Uncertainty band depends on A, in contrast to homogeneous band for all A e.g., Mumpower et al. 2015

Can we link masses to r-process abundances?

Two neutron separation energy: abundances

Two neutron separation energy

Nucleosynthesis path at constant S_n : (n,γ) - (γ,n) equilibrium

Martin, Arcones, Nazarewicz, Olsen (2016)

Two neutron separation energy: abundances

Fission: barriers and yield distributions

Neutron star mergers: r-process with two fission descriptions

2nd peak (A~130): fission yield distribution

3rd peak (A~195): mass model, neutron captures

Conclusions

Neutron star mergers:

FAIR

Core-collapse supernovae:

wind: up to ~Ag

Magneto-rot.: r-process