Are heavy r-process elements produced only in neutron-star mergers? One year after gravitational wave detection GW170817 | 1
H | | | | | | | | | | | | | | | | 2
He | | | |---------------|----------|----------|-----------|-----------|-----------|-----------|----------|------------|-----------|-----------|-----------|------------|------------|------------|------------|------------|------------|-----------| | 3
Li | 4
Be | | | | | | | | | | | 5
B | 6
C | 7
N | 8
O | 9
F | 10
Ne | | | 11
Na | 12
Mg | | | | | | | | | | | 13
Al | 14
Si | 15
P | 16
S | 17
CI | 18
Ar | | | 19
K | 20
Ca | 21
Sc | 22
Ti | 23
V | 24
Cr | 25
Mn | 26
Fe | 27
Co | 28
Ni | 29
Cu | 30
Zn | 31
Ga | 32
Ge | 33
As | 34
Se | 35
Br | 36
Kr | | | 37
Rb | 38
Sr | 39
Y | 40
Zr | 41
Nb | 42
Mo | 43
Tc | 44
Ru | 45
Rh | 46
Pd | 47
Ag | 48
Cd | 49
In | 50
Sn | 51
Sb | 52
Te | 53
I | 54
Xe | | | 55
Cs | 56
Ba | * | 72
Hf | 73
Ta | 74
W | 75
Re | 76
Os | 77
Ir | 78
Pt | 79
Au | 80
Hg | 81
TI | 82
Pb | 83
Bi | 84
Po | 85
At | 86
Rn | | | 87
Fr | 88
Ra | ** | 104
Rf | 105
Db | 106
Sg | 107
Bh | | 109
Mt | 110
Ds | 111
Rg | 112
Cn | 113
Uut | 114
Uuq | 115
Uup | 116
Uuh | 117
Uus | 118
Uuo | | | 119
Uun | * Lanthanides | | | des | 57
La | 58
Ce | 59
Pr | 60
Nd | 61
Pm | 62
Sm | 63
Eu | 64
Gd | 65
Tb | 66
Dy | 67
Ho | 68
Er | 69
Tm | 70
Yb | 71
Lu | | ** Actinides | | | | 89
Ac | 90
Th | 91
Pa | 92
U | 93
Np | 94
Pu | 95
Am | 96
Cm | 97
Bk | 98
Cf | 99
Es | 100
Fm | 101
Md | 102
No | 103
Lr | # after Big Bang # Stars build elements up to iron group Massive stars: 8 M_☉ < M ≤ 70 M_☉ $(M_{\odot}=1.99 \times 10^{30} \text{ kg})$ Hydrostatic burning stages Final stage: iron core No more energy gain from fusion How were the elements from iron to uranium made? # s-process and r-process slow and rapid neutron capture compared to beta decay neutron capture (n, γ): (Z,A) + n \rightarrow (Z,A+1) + γ beta decay: $(Z,A) \rightarrow (Z+1,A)$ #### r-process Rapid neutron capture compared to beta decay Neutron density: $N_n \sim 10^{27} - 10^{20} \text{ cm}^{-3}$ Temperature: $T \sim 10^{10} - 10^8 \text{ K}$ 68 **Protons** Neutron capture Stable nuclei nuclei in lab r-process path 86 88 90 **Neutrons** # Solar system abundances Solar photosphere and meteorites: chemical signature of gas cloud where the Sun formed #### Contribution of all nucleosynthesis processes # Where does the r-process occur? rapid process → explosions high neutron densities → neutron stars #### Core-collapse supernovae # Cas A (Chandra X-Ray observatory) #### Neutron star mergers # Galactic chemical evolution First stars: H, He —— Heavy elements —— New generation of stars ESO PR Photo 21/6/02 (50 Datober 2002) OEuropear Southern Chrematon The very metal-deficient star HE 0107-5240 (Hamburg-ESO survey) # Trends with metallicity # Fingerprint of the r-process #### Oldest observed stars #### Solar system abundances HD 221170: Ivans et al. (2006) HE 1523-0901: Frebel et al. (2007) # GW170817 # Kilonova ## Kilonova R-process in neutron star mergers confirmed by kilonova (radioactive decay of n-rich nuclei) after gravitational wave detection from GW170817 Li & Paczynski (1998) # Neutron star mergers t: 1.15e+00 s / T: 0.56 GK / ρ_b : 3.98e+02 g/cm³ 10^{0} T (GK) 10.0 100 1.0 0.1 10^{-5} Pb (Z=82 80 10^{12} 10^{0} 10^{8} 10^{4} proton number, Z ρ (g cm⁻³) 184 60 Sn (Z=50) robust r-process 40 Ni (Z=28) 20 50 10⁻⁷ 28 50 100 neutron nun 170 190 200 180 210 160 120 140 150 130 Korobkin et al. 2012 Mass number A # Ejecta and nucleosynthesis Neutron star mergers: neutrino-driven wind 3D simulations after merger disk and neutrino-wind evolution neutrino emission and absorption Nucleosynthesis: 17 000 tracers Martin et al. (2015) see also Fernandez & Metzger 2013, Metzger & Fernandez 2014, Just et al. 2014, Sekiguchi et al. # Kilonova Martin et al. (2015) # Equation of state and neutrinos GR simulations: different EoS (Bovard et al. 2017) impact of neutrinos (Martin et al. 2018) How were the elements from iron to uranium made? R-process in neutron star mergers Are we done? No - GCE points to more contributions - Nuclear physics of extreme neutron-rich nuclei # Trends with metallicity ## Galactic chemical evolution Scatter at low metallicities: rare event, Eu ejected early Eu/Fe drops around [Fe/H]~-1: most of Eu should be ejected before sn la Côté et al. 2018 (to be submitted) # Core-collapse supernovae Standard **neutrino-driven supernova**: Weak r-process and vp-process Elements up to ~Ag # Neutrino-driven winds neutrons and protons form α-particles α-particles recombine into seed nuclei NSE \rightarrow charged particle reactions / α -process $$T = 10 - 8 GK$$ → r-processweak r-processvp-process T < 3 GK # Neutrino-driven wind parameters r-process \Rightarrow high neutron-to-seed ratio (Y_n/Y_{seed}~100) - Short expansion time scale: inhibit α-process and formation of seed nuclei - High entropy: photons dissociate seed nuclei into nucleons - Electron fraction: Y_e<0.5 Arcones & Thielemann (2013) Conditions are not realized in hydrodynamic simulations (Arcones et al. 2007, Fischer et al. 2010, Hüdepohl et al. 2010, Roberts et al. 2010, Arcones & Janka 2011, ...) $$S_{wind} = 50 - 120 \text{ k}_{B}/\text{nuc}$$ $\tau = \text{few ms}$ $Y_{e} \approx 0.4 - 0.6?$ #### Additional ingredients: wind termination, extra energy source, rotation and magnetic fields, neutrino oscillations # Lighter heavy elements in neutrino-driven winds Observation pattern reproduced! Production of p-nuclei #### weak r-process Overproduction at A=90, magic neutron number N=50 (Hoffman et al. 1996) suggests: only a fraction of neutron-rich ejecta (Arcones & Montes, 2011) # Origin of elements from Sr to Ag Astrophysical site Nucleosynthesis: identify key reactions Chemical evolution # Impact of astrophysical uncertainties Steady-state model to explore possible nucleosynthesis patterns in neutrino-driven ejecta Nucleosynthesis ~3000 trajectories Input parameters: M_{ns}, R_{ns}, Y_e Bliss, Witt, Arcones, Montes, Pereira (2018) # Characteristic nucleosynthesis patterns binding energies partition functions Q-values of (α,n) reactions Individual reactions 10 15 20 25 30 Atomic number Z Bliss, Witt, Arcones, Montes, Pereira (2018) Provide representative trajectories to explore impact of nuclear physics input (nuc-astro.eu) ### Reactions in neutrino-driven supernova ejecta - Important reactions: α-, n-, p-capture reactions, β-decays - $\tau_{\text{expansion}} << \tau_{\beta} \rightarrow (\alpha, n)$ are key reactions - **Q-process** (Hoffman & Woosley 1992) - Absence of relevant experiments - → theoretical reaction rates based on Hauser-Feshbach model J. Bliss, A. Arcones, F. Montes, and J. Pereira (2017) # (a,n) reactions: sensitivity study - Independently vary each (α,n) rate between Fe and Rh by a random factor - Identification of key reactions → large correlation and abundance change - 82Ge, 84,85Se, 85Br(α,n) strongly affect abundance of Z=36–39 - Measurement of key (α,n) reactions to reduce nuclear physics uncertainties: - \rightarrow 75Ga(α ,n) and 85Br(α ,n) at ReA3 (NSCL/MSU) - → need more experiments J. Bliss, A. Arcones, F. Montes, and J. Pereira in preparation ### Core-collapse supernovae Standard **neutrino-driven supernova**: Weak r-process and vp-process Elements up to ~Ag #### Magneto-rotational supernovae Neutron-rich matter ejected by strong magnetic field (Cameron 2003, Nishimura et al. 2006) 2D and 3D + parametric neutrino treatment : - jet-like explosion: heavy r-process - magnetic field vs. neutrinos: weak r-process Nishimura et al. 2015, 2017, Winteler et al. 2012, Mösta et al. 2018 ### Magneto-rotational supernovae: r-process Neutron-rich matter ejected by strong magnetic field (Cameron 2003, Nishimura et al. 2006) 2D, parametric neutrino treatment (Nishimura et al. 2015, 2017) magnetic field vs. neutrinos ### Magneto-rotational supernovae: r-process 3D, leakage (Winteler et al. 2012, Mösta et al. 2017) - jet-like explosion, heavy r-process: strong magnetic field (10¹³G) or symmetry (~2D), 10¹²G - Weak r-process: 3D, 10¹²G ### Magneto-rotational supernovae: r-process Neutrinos and late evolution are important Martin Obergaulinger: 2D, M1, ~1-2s Progenitor: 35 M_{sun} Obergaulinger & Aloy (2017) # Impact of rotation and magnetic field RO: progenitor RRW: weak mag. field strong rot. RW: weak mag. field RS: strong mag. field # Nuclear physics input nuclear masses, beta decay, reaction rates (neutron capture), fission Erler et al. (2012) ### Nuclear masses Abundances based on density functional theory - six sets of different parametrisation (Erler et al. 2012) - two realistic astrophysical scenarios: jet-like sn and neutron star mergers Martin, Arcones, Nazarewicz, Olsen (2016) First systematic uncertainty band for r-process abundances Uncertainty band depends on A, in contrast to homogeneous band for all A e.g., Mumpower et al. 2015 Can we link masses to r-process abundances? ### Two neutron separation energy: abundances # Two neutron separation energy Nucleosynthesis path at constant S_n : (n,γ) - (γ,n) equilibrium Martin, Arcones, Nazarewicz, Olsen (2016) # Two neutron separation energy: abundances # Fission: barriers and yield distributions Neutron star mergers: r-process with two fission descriptions 2nd peak (A~130): fission yield distribution 3rd peak (A~195): mass model, neutron captures ### Conclusions ### Neutron star mergers: FAIR ### Core-collapse supernovae: wind: up to ~Ag Magneto-rot.: r-process