

GSI-FAIR Colloquium, Darmstadt, 16 October 2018

Testing Fundamental Symmetries at the Atomic Scale

university of VSI

Niklhef

Klaus Jungmann Van Swinderen Institute for Particle Physics and Gravity University of Groningen, NL

➢ Selection of a Few Topics neccessary
 → Focus on Transformativity

- ≻ C, P, CP, CPT
 → Precision Test of Standard Model
- Hand in Hand with Applications
 Atomic Parity Violation & Precision Clocks
- ➢ Search for permanent Electric Dipole Moments
 → Exploiting & Testing Symmetries

Van Swinderen Institute @RUG Low Energy Precision Physics

A. Borschevsky, S.Hoekstra, K. Jungmann, R.G.E. Timmermans, L. Willmann (H.W. Wilschut until 2016)

VSI has Three Research Lines (*with both Experiment & Theory***):**

- Cosmic Frontier
- Early Universe & Gravitation
- High Energy Frontier Standard Model Tests, LHCb
- Precision Frontier
- Low Energy Precision Standard Model Tests

Focus: Parity Violation in Ra/Ba towards measuring $\sin^2 \theta_w$ at low Q

- single ion experiment
- sensitive to Z'
- sensitive to dark Z-boson
- many more

Focus: EDM in ¹²⁹Xe and in Cold Molecule BaF

- Xe experiment advanced (with U. Mainz & U. Heidelberg)
- BaF big enhancement (with VU Amsterdam)
- sensitive to New Physics
- Goal: Best Electron EDM

Standard Model Tests

- Standard Model (SM) of particle physics is Best Theory we have !
- Still large number of open questions e.g. particle masses, origin of parity violation,

Direct: Searches for New Particles

e.g. Discovery of Higgs boson,.. also: Difference Matter-Antimatter ...

Indirect: High Precision Measurements

Van Swinderen Institute

e.g. Atomic Parity Violation (APV), EDM searches,

Discrete Symmetries C,P,T,CP,CPT

Parity

university of VSI

→ relatively large effects in some atoms and molecules
→ one valence electron atoms to extract precise constants
→ more complex systems to study e.g. anapole moments

Atomic Parity Violation (APV)

Physics beyond the SM

 $Q_{\rm W} = -N + (1 - 4 \sin^2 \theta_{\rm W})Z + \text{rad. corr.} + \text{"new physics"}$

Extra Z' boson in SO(10) GUTs:

$$\delta Q_W \cong (2N+Z) a_e'(\xi) v_d'(\xi) \left[\frac{M_Z^2}{M_{Z'}^2} \right]$$

Londen en Rosner (1986) Marciano en Rosner (1990) Altarelli et al. (1991)

Bound on $M_{z'}$ from cesium APV (84% confidence level, ξ = 52° *Derevianko 2009*) $M_{z'}$ > 1.3 TeV/c²

(Tevatron $M_{z'} > 0.82 \text{ TeV/}c^2$)

Bound (possible) on
$$M_{z'}$$
 from Ra⁺ APV
 $M_{z'}$ > 5 TeV/c²

(full LHC M_{z'} ~4.5 TeV/c²)

The way to go!

groningen VSI

S. Kumar, W. Marciano, Annu. Rev. of Nucl. Part. Sci. **63**, 237 (2013) H. Davoudiasl, Hye-Sung Lee, W. Marciano, arxiv. 1402.3620 (2014)

S. Kumar, W. Marciano, Annu. Rev. of Nucl. Part. Sci. **63**, 237 (2013) H. Davoudiasl, Hye-Sung Lee, W. Marciano, arxiv. 1402.3620 (2014)

S. Kumar, W. Marciano, Annu. Rev. of Nucl. Part. Sci. 63, 237 (2013)

H. Davoudiasl, Hye-Sung Lee, W. Marciano, arxiv. 1402.3620 (2014)

H. Davoudiasl, H. S. Lee and W. J. Marciano, Phys. Rev. D 92, 055005 (2015)

Atomic Parity Violation basic concept

L.W. Wansbeek et al., Phys. Rev. A 78, 050501 (R) (2008)

Atomic Parity Violation Extraction of Weinberg Angle

Atomic Parity Violation

Extraction of Weinberg Angle

$$Q_{W} = -N + (1 - 4 \sin^{2}\theta_{W})Z + rad. \ corr.$$

$$Q_{W} = \frac{E1_{APV}}{k}$$

$$Measured by light shifts$$

$$Measured by light shifts$$

$$Q_{W} = \frac{E1_{APV}}{k}$$

$$Depends on atomic structure.$$

Atomic Parity Violation

Ba⁺ and Ra⁺

VSI

Laser Spectroscopy in Ra⁺ ions

M. Nuñez Portela, et al., Appl. Phys. B, DOI:10.1007/s00340-013-5603-2 (2013) O.O. Versolato, et al., Phys. Rev. A 82, 010501(R) (2010)

Online Ra⁺ Ion Production

	Isotope	Ι	$T_{1/2}$ [s]	Production Method		Production [ions/s]	Estimated No. trapped ions
	209 Ra	5/2	4.6(1.5)	П	Facility	200	40
_	$^{-210}$ Ra	0	3.66(18)	ĸ	Facility	500	75
	211 Ra	5/2	12.61(5)		Facility	1000	1200
	212 Ra	0	12.5(1.0)	В	Facility	800	1000
	213 Ra	1/2	162.0(1.7)	_	Facility	2600	10000
	214 Ra	0	2.42(14)		Facility	1000	100
_	225 Ra	1/2	14.9(2)d	off line source			few
	226 Ra	0	$1600(7)\mathrm{y}$	off line source			few

 $\begin{array}{c} \text{filter}\\ \text{Paul trap}\\ \text{Paul trap}\\ \text{Dichroic mirror}\\ \text{Dichroic mirror}\\ \lambda_2\\ \text{V}_{\text{R}^+}\\ \text{V}_{\text{R}^+}\\ \text{Dichroic mirror}\\ \lambda_2\\ \text{Dichroic mirror}\\ \lambda_2\\ \text{Dichroic mirror}\\ \lambda_2\\ \text{Dichroic mirror}\\ \lambda_2\\ \text{Dichroic mirror}\\ \lambda_1\\ \text{Dichroic mirror}\\ \lambda_2\\ \text{Dichroic mirror}\\ \lambda_3\\ \text{Dichroic mirror}\\ \lambda_4\\ \text{Dichroic mirror}\\ \lambda_4\\$

ΔN > 10

Laser Spectroscopy in Ra⁺ lons

Good agreement with theory at few % level Theory improvement is in pipeline.

university of groningen

O.O. Versolato et al., Phys. Lett. A 375, 3130 (2012)O.O. Versolato et al., Phys. Rev. A 82, 010501(R) (2010)G.S. Giri et al., Phys. Rev. A 84, 020503(R) (2011)

Ra⁺ Measurements @ AGOR

Hyperfine Structure:

Probe of atomic wave functions at the origin

Isotope Shifts:

Probe of atomic theory & size and shape of the nucleus

Excited State Lifetimes:

Probe of S-D E2 matrix element

% level agreement with theory (Safronova, Sahoo,Timmermans et al.)

Intermezzo:

go hand in hand

Radium has a Great Potential for

Fundamental Physics a Clock

groningen / VSI

Ra⁺ Ion Atomic Clock

- Narrow Transition, Ultra Stable Lasers
- Low Sensitivity to external fields (for I=3/2)
- Time Variation of Fine Structure Constant
- Major Systematics: Quadrupole Shift

<10⁻¹⁸ ²²³Ra⁺ Atomic Clock

Willmann, Dijck, Jungmann et a

 \rightarrow TJ Pinkert et al., Applied Optics 54, 728 (2015)

Koelemeij, Eikema, Ubachs et al.

e.g. clock signal exchange significantly better than GPS

Sensitivity to $\pmb{\dot{\alpha}}$

O.O. Versolato et al., Phys. Rev. A 83, 043829 (2011)

back to

Parity

Ba⁺ almost as good as Ra⁺

Single Ba⁺ Ion

•

•

kj GSI/ FAIR 16-10-18

Detection Methods

Ba⁺ spectroscopy

- ²D_{5/2} level lifetime Electron shelving
- Transition frequencies Line shape analysis

groningen / VSI

Ē

Ba⁺ spectroscopy

- ²D_{5/2} level lifetime Electron shelving
- Transition frequencies Line shape analysis

Ba⁺ Experiment : Lifetime D_{5/2}

Ba⁺ Experiment : Lifetime D_{5/2}

Ba⁺ 5²D_{5/2} Level Lifetime

- Fitted ²D_{5/2} level lifetime and shelving rate
- No prominent difference with single ion runs
- Excellent to Investigate systematics

Ba⁺ Experiment : Lifetime D_{5/2}

Ba⁺ spectroscopy

- ²D_{5/2} level lifetime Electron shelving
- Transition frequencies Line shape analysis

Ē
Modeling of Line Shape

• Optical Bloch equation 3 level example

$$\frac{d}{dt}\rho_{ij} = \frac{i}{\hbar} \left[H,\rho\right] + R(\rho)$$

	$(\Delta_1 - \omega_B)$	0	$-\frac{2}{\sqrt{2}}\Omega_1$	0	0	0	0	0
	0	$\Delta_1 + \omega_B$	0	$-\frac{2}{\sqrt{7}}\Omega_1$	0	0	0	0
	$-\frac{2}{\sqrt{2}}\Omega_1$	0	$-\frac{1}{3}\omega_R$	0	$\frac{1}{\sqrt{2}}\Omega_2$	$-\frac{2}{\sqrt{6}}\Omega_2$	$-\frac{i}{\sqrt{6}}\Omega_2$	0
TT 1	0	$\frac{2}{\sqrt{3}}\Omega_1$	0	aum	0	$\frac{i}{\sqrt{6}}\Omega_2$	$-\frac{2}{\sqrt{2}}\Omega_2$	$-\frac{i}{\sqrt{2}}\Omega_2$
H = h	0	0	$-\frac{i}{\sqrt{2}}\Omega_2$	0	$\Delta_2 = \frac{6}{5} \omega_B$	0	0	0
	0	0	$\frac{3}{36}\Omega_2$	$-\frac{i}{\sqrt{6}}\Omega_2$	0	$\Delta_2 = \frac{2}{5} \omega_B$	0	0
	0	0	$\frac{i}{\sqrt{6}}\Omega_2$	$-\frac{2}{\sqrt{6}}\Omega_2$	0	0	$\Delta_2 + \frac{2}{3}\omega_B$	0
	0	0	0	$\frac{1}{\sqrt{2}}\Omega_2$	0	0	0	$\Delta_2 + \frac{6}{5} \omega_B$
	(

$\left(\Gamma_{1}(\frac{1}{2}\rho_{33}+\frac{3}{2}\rho_{44})\right)$	$-\Gamma_{13}\rho_{34}$	$-\gamma'\rho_{13}$	$-\gamma' \rho_{14}$	-79 P15	-77 Pin	$-\gamma_{2}\rho_{VI}$	$-\gamma_1\rho_{13}$
$-\Gamma_{13}\rho_{13}$	$\Gamma_1(\frac{2}{3}\rho_{33} + \frac{1}{3}\rho_{44})$	$-\gamma' \rho_{23}$	$-\gamma'\rho_{24}$	-79P25	$-\gamma_{7}\rho_{26}$	-39.021	$-\gamma_{1}\rho_{28}$
$-\gamma'\rho_{34}$	$-\gamma'\rho_{32}$	$-\Gamma\rho_{33}$	$-\Gamma\rho_{34}$	$-\gamma' \rho_{35}$	$-\gamma'\rho_{26}$	$-\gamma'\rho_{37}$	$-\gamma' \rho_{38}$
$-\gamma' \rho_{k1}$	$-\gamma'\rho_{42}$	$-\Gamma\rho_{43}$	$-\Gamma \rho_{44}$	$-\gamma'\rho_{45}$	$-\gamma'\rho_{W_{i}}$	$-\gamma'\rho_{47}$	$-\gamma' \rho_{48}$
-22,051	$-\gamma_1 \rho_{22}$	$-\gamma'\rho_{33}$	$-\gamma'\rho_{54}$	$\Gamma_{2}^{-1}\rho_{33}$	$\Gamma_2 \frac{1}{2\sqrt{3}} \rho_{34}$	0	0
- 77 Pet	- 19.062	$-\gamma^{i}\rho_{K3}$	$-\gamma'\rho_{64}$	$\Gamma_{2}\frac{1}{2\sqrt{3}}\rho_{43}$	$\Gamma_2(\frac{1}{3}\rho_{23} + \frac{1}{6}\rho_{44})$	$\Gamma_{23}^{-1}\rho_{34}$	0
$-\gamma_1\rho_{21}$	- 1/2 1/22	$-\gamma'\rho_{\uparrow\uparrow}$	$-\gamma'\rho_{74}$	0	$\Gamma_{2\frac{1}{2}}\rho_{43}$	$\Gamma_2(\frac{1}{6}\rho_{33} + \frac{1}{3}\rho_{44})$	F2-2-13P34
$-\gamma_{2}\rho_{81}$	$-\gamma_1\rho_{82}$	$-\gamma'\rho_{83}$	$-\gamma' \rho_{84}$	0	0	$\Gamma_2 \frac{1}{2\sqrt{3}} \rho_{43}$	$\Gamma_{2\frac{1}{2}}\rho_{44}$
	$ \begin{pmatrix} \Gamma_1(\frac{1}{2}\rho_{23} + \frac{1}{2}\rho_{43}) \\ -\Gamma_1\frac{1}{3}\rho_{43} \\ -\gamma'\rho_{41} \\ -\gamma'\rho_{41} \\ -\gamma\rho_{51} \\ -\gamma\rho_{51} \\ -\gamma\rho_{51} \\ -\gamma\rho_{51} \\ -\gamma\rho_{51} \\ -\gamma\rho_{51} \end{pmatrix} $	$\begin{array}{ll} \left(\Gamma_1(\frac{1}{2}\rho_{13})+\frac{2}{3}\rho_{14}) & -\Gamma_1\frac{1}{3}\rho_{24} \\ -\Gamma_1\frac{1}{3}\rho_{23} & \Gamma_1(\frac{2}{3}\rho_{23}+\frac{1}{3}\rho_{14}) \\ -\gamma'\rho_{21} & -\gamma'\rho_{22} \\ -\gamma'\rho_{21} & -\gamma'\rho_{22} \\ -\gamma_1\rho_{21} & -\gamma_1\rho_{22} \\ -\gamma_1\rho_{21} & -\gamma_1\rho_{22} \\ -\gamma_1\rho_{21} & -\gamma_1\rho_{22} \\ -\gamma_1\rho_{21} & -\gamma_1\rho_{22} \end{array} \right)$	$\begin{array}{ll} \left(\Gamma_1(\frac{1}{2}\rho_{13})+\frac{2}{3}\rho_{44}\right) & -\Gamma_1(\frac{1}{3}\rho_{34}) & -\gamma'\rho_{13} \\ -\Gamma_1(\frac{1}{3}\rho_{23}) & \Gamma_1(\frac{2}{3}\rho_{23}+\frac{1}{3}\rho_{44}) & -\gamma'\rho_{23} \\ -\gamma'\rho_{21} & -\gamma'\rho_{22} & -\Gamma\rho_{23} \\ -\gamma'\rho_{41} & -\gamma'\rho_{42} & -\Gamma\rho_{43} \\ -\gamma_1\rho_{51} & -\gamma\rho_{52} & -\gamma'\rho_{55} \\ -\gamma_1\rho_{51} & -\gamma_1\rho_{52} & -\gamma'\rho_{55} \\ -\gamma_1\rho_{51} & -\gamma\rho_{52} & -\gamma'\rho_{55} \\ -\gamma_1\rho_{51} & -\gamma\rho_{52} & -\gamma'\rho_{55} \end{array}$	$\begin{array}{lll} \left(\Gamma_1(\frac{1}{2}\rho_{33}+\frac{2}{3}\rho_{44}) & -\Gamma_1(\frac{1}{3}\rho_{34} & -\gamma'\rho_{13} & -\gamma'\rho_{14} \\ -\Gamma_1(\frac{1}{3}\rho_{33} & \Gamma_1(\frac{1}{3}\rho_{33}+\frac{1}{3}\rho_{44}) & -\gamma'\rho_{23} & -\gamma'\rho_{24} \\ -\gamma'\rho_{21} & -\gamma'\rho_{21} & -\Gamma\rho_{23} & -\Gamma\rho_{24} \\ -\gamma_1\rho_{21} & -\gamma'\rho_{22} & -\Gamma\rho_{23} & -\Gamma\rho_{24} \\ -\gamma_1\rho_{23} & -\gamma\rho_{23} & -\gamma'\rho_{23} & -\gamma'\rho_{24} \\ -\gamma_1\rho_{23} & -\gamma\rho_{22} & -\gamma'\rho_{33} & -\gamma'\rho_{44} \\ -\gamma_1\rho_{21} & -\gamma\rho_{22} & -\gamma'\rho_{33} & -\gamma'\rho_{44} \\ -\gamma_1\rho_{21} & -\gamma\rho_{22} & -\gamma'\rho_{33} & -\gamma'\rho_{44} \\ -\gamma_1\rho_{21} & -\gamma\rho_{22} & -\gamma'\rho_{31} & -\gamma'\rho_{44} \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Line Shapes and Polarization

groningen VSI

Two-photonTransitions in single Ba⁺

- Ba+ level scheme : 8 Zeeman sublevels.
- Two photon transition : Raman resonance (δ_R)
- Strongly dependent on:
 - Mangetic field strength and direction
 - Laser light polarization

 \rightarrow Signals also with blue detuning!

Systematic Checks of all Parameters: Here, e.g., Blue Laser Detuning

- Eliminate Light Shifts
- Determine Transition Frequencies
- Check Atomic Calculations
- Exploit knowledge from Fano resonances
- \Rightarrow Theses:

Nivedya Valappol & Elwin Dijck (2019)

Transition frequencies

- Data fit to optical Bloch equation model
- Extract transition frequencies with 100 kHz accuracy jick et al., Phys. Rev. A 91, 060501(R) (2015)

Ba+ Transitions - King Plot

kj GSI/ FAIR 16-10-18

looks o.k.

Atomic parity violation

Light Shifts measured in Ba⁺ ion

- Measured Raman dip spectrum for the 5d²D_{3/2} - 6p²P_{1/2} transition
- 494nm light linearly polarised in vertical direction along z-axis
- 650nm light circularly polarised
- light shift laser polarised in the horizontal direction
- magnetic field of 510µT along B_z-direction
- Detunings were large compared to the power broadened linewidth

Light Shifts measured in Ba+ion

- Scaling of light shift with the detunings of light shifting light
- $\Delta v_{LS} = 0.16(3)GHz^2.1/\Delta_{LS}$, Δ_{LS} is detuning of light shifting light
- Polarisation with respect to quantization axes i.e. magnetic field are important

Radium for APV

Accuracy of single ion Experiment

$$\frac{\mathscr{E}^{\mathsf{PNC}}}{\delta\mathscr{E}^{\mathsf{PNC}}} \cong \frac{\mathscr{E}^{\mathsf{PNC}} E_0}{\hbar} f \sqrt{N\tau t}$$

 $E_0 = Light$ electric field amplitude, $\tau = Coherence$ time N = Number of ions = 1, t = Time of observation

	Coherence Time	Projected Accuracy	Measurement Time
Ba ⁺	80 sec	0.2%	1.1 day
Ra⁺	0.6 sec	0.2%	1.4 day

university of groningen VSI

→ 10 days for 5 fold improvement over Cs

Permanent

Electric Dipole Moments

→ Quantum Mechanics ⇒ perm. EDM d || s (no such constraints on time varying EDM)

→ Leptons: clean and ready for New Physics

→ Baryons: depend on θ_{QCD} in Standard Model

→ Limit on θ_{QCD} : extracted from EDM searches

Status Atomic Parity Violation in Ba⁺/Ra⁺

Developing Ba⁺/Ra⁺ single ion trapping setup & techniques

- Calculations tested
- Response Λ-system to two lasers described by optical Bloch Model *Improved measurement of transition frequencies Light shift measurements started*
- Driving Force: Determination sin² \varPhi_W at low Q

Ion Trappers Van Swinderen Institute, University of Groningen

-

Grasc

ndrew Grier

layerlin Nuñez Portela

Spin of Fundamental Particles

S is the only vector characterizing a non-degenerate quantum state magnetic moment: $\vec{\mu}_{x} = 2(1 + a_{x}) \ \mu_{0x} \ c^{-1} \ S$ electric dipole moment: $\vec{\mathbf{d}}_{\mathbf{x}} = \eta \ \mu_{\mathbf{0}\mathbf{x}} \ \mathbf{c}^{-1} \ \mathbf{S}$ magneton: $\mu_{0x} = e\hbar / (2m_{\star})$ $0.7 \cdot 10^{-12}$ a sum (also the m)

$$\mathbf{\mu}_{0x} \ \mathbf{c}^{-1} \ \mathbf{S} = \begin{cases} 9.7 \cdot 10^{-12} \ \mathrm{e} \ \mathrm{cm} & (\mathrm{electron}) \\ 4.6 \cdot 10^{-14} \ \mathrm{e} \ \mathrm{cm} & (\mathrm{muon}) \\ 5.3 \cdot 10^{-15} \ \mathrm{e} \ \mathrm{cm} & (\mathrm{nucleon}) \end{cases}$$

Possible Sources of EDMs

Lines of attack towards an EDM

Limit on EDM vs Time

Hg: B.Graner *et al.*, *Phys. Rev. Lett.* 116, 161601 (2016) [Seattle] e⁻: J. Baron *et al.*, *Science* 343, 269 (2014) [Harward, Yale]

EDM Experiments vs. Time

groningen VSI

EDM Sensitivity to Different Models

Some EDM Limits (in e cm)

²⁰⁵ Tl	Berkeley	1.6 × 10 ⁻²⁷	90%	6.9(7.4) × 10 ⁻²⁸	2002
ThO	Harvard-Yale	8.7x10 ⁻²⁹	90	-2.1(3.7)(2.5) x10 ⁻²⁹	2014
Eu _{0.5} Ba _{0.5} TiO ₃	Yale	6.05 × 10 ⁻²⁵	90	$-1.07(3.06)(1.74) \times 10^{-25}$	2012
PbO	Yale	1.7 × 10 ⁻²⁶	90	-4.4(9.5)(1.8) × 10 ⁻²⁷	2013
ThO	ACME	8.7 × 10 ⁻²⁹	90	-2.1(3.7)(2.5) × 10 ⁻²⁹	2014
n	Sussex-RAL-ILL	2.9 × 10 ⁻²⁶	90	0.2(1.5)(0.7) × 10 ⁻²⁶	2006
¹²⁹ Xe	UMich	6.6 × 10 ⁻²⁷	95	0.7(3.3)(0.1) × 10 ⁻²⁷	2001
¹⁹⁹ Hg	UWash	7.4x10 ⁻³⁰	95	2.2(2.8)(1.5) x10 ⁻³⁰	2016
muon	E821 BNL g-2	1.8 × 10 ⁻¹⁹	95	0.0(0.2)(0.9) × 10 ⁻¹⁹	2009
	²⁰⁵ Tl ThO Eu _{0.5} Ba _{0.5} TiO ₃ PbO ThO ThO ¹²⁹ Xe ¹⁹⁹ Hg muon	205TlBerkeleyThOHarvard-YaleEu_0.5Ba_0.5TiO3YalePbOYalePbOYaleThOACMEnSussex-RAL-ILL129XeUMich199HgUWashmuonE821 BNL g-2	205Tl Berkeley 1.6 × 10 ⁻²⁷ ThO Harvard-Yale 8.7x10 ⁻²⁹ Eu _{0.5} Ba _{0.5} TiO ₃ Yale 6.05 × 10 ⁻²⁵ PbO Yale 1.7 × 10 ⁻²⁶ ThO ACME 8.7 × 10 ⁻²⁹ n Sussex-RAL-ILL 2.9 × 10 ⁻²⁶ ¹²⁹ Xe UMich 6.6 × 10 ⁻²⁷ ¹⁹⁹ Hg UWash 7.4x10 ⁻³⁰ muon E821 BNL g–2 1.8 × 10 ⁻¹⁹	205 TlBerkeley 1.6×10^{-27} 90%ThOHarvard-Yale 8.7×10^{-29} 90 $Eu_{0.5}Ba_{0.5}TiO_3$ Yale 6.05×10^{-25} 90PbOYale 1.7×10^{-26} 90ThOACME 8.7×10^{-29} 90nSussex-RAL-ILL 2.9×10^{-26} 90 129 XeUMich 6.6×10^{-27} 95199HgUWash 7.4×10^{-30} 95muonE821 BNL g -2 1.8×10^{-19} 95	205 TlBerkeley 1.6×10^{-27} 90% $6.9(7.4) \times 10^{-28}$ ThOHarvard-Yale 8.7×10^{-29} 90 $-2.1(3.7)(2.5) \times 10^{-29}$ $Eu_{0.5}Ba_{0.5}TiO_3$ Yale 6.05×10^{-25} 90 $-1.07(3.06)(1.74) \times 10^{-25}$ PbOYale 1.7×10^{-26} 90 $-4.4(9.5)(1.8) \times 10^{-27}$ ThOACME 8.7×10^{-29} 90 $-2.1(3.7)(2.5) \times 10^{-29}$ nSussex-RAL-ILL 2.9×10^{-26} 90 $0.2(1.5)(0.7) \times 10^{-26}$ ^{129}Xe UMich 6.6×10^{-27} 95 $0.7(3.3)(0.1) \times 10^{-27}$ ^{199}Hg UWash 7.4×10^{-30} 95 $2.2(2.8)(1.5) \times 10^{-30}$

EDM limits probe TeV scale physics ↔ about LHC next generation → beyond LHC

E

Jan 2014

Doyle, Gabrielse, DeMille

Highlight: ThO electorn EDM experiment

 $E_{eff} \sim \Pi \alpha^2 Z^3 e / a_0^2$ due to relativity (P.G.H. Sandars)

 $E_{eff} \cong 80 \text{ GV/cm}$ (depending on theorist)

 E_{ext} ~ 1 V/cm enough for ThO

New limit for ed_e < 8.7* 10⁻²⁹ e cm (90% c.l.)

Generic EDM Sensitivity

Bastian Yip, Master thesis RUG, 2015

Preferred Composed Systems

$$\delta d = \frac{\hbar}{EP\varepsilon\sqrt{\tau TN}} \ \text{/enh} \quad \begin{tabular}{c} T & \text{measurement time} \\ P & \text{polarization} \\ enh & enhancement \end{tabular} \end{tabular}$$

Particle	Number Particles N	Coherence Time τ [s]	Efficiency ε	Electric Field	Figure of Merrit
				E [kV/cm]	
¹⁹⁹ Hg	10 ¹⁴	2x10 ²	8x10 -3	10	5x10 ¹³
¹²⁹ Xe	10 ²²	10 ⁴	9x10 -9	3.6	1x10 ¹⁴
²²⁵ Ra	10 ³	4x10¹	7x10 -5	67	3x10 ⁶
ThO	10 ¹¹	1.1x10 -3	2x10 -2	<0.1	2x10 ¹³
BaF	10 ¹¹	10 -1	10 -2	10	5x10 ¹³
p/d	10 ⁸	10 ³	10 -2	80	7x10 ¹³

- J.O. Grasdijk
- K. Jungmann
- L. Willmann

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

M. Doll

- S. Karpuk
- Y. Sobolev
- K. Tullney
- S. Zimmer

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

F. Allmendinger

U. Schmidt

H.-J. Krause

A. Offenhäusser

EDM Search from ³He/¹²⁹Xe Clock Comparison

³He:
$$T_2^* = (60.2 \pm 0.1)h$$

129Xe: $4h < T_2^* < 6h$

Sketch of experimental setup

typically: 4 mbar He 8 mbar Xe 40 mbar SF₆

gas preparation area outside MSR

¹²⁹Xé SF_6 ³Hé

Se al university of VSI

Coil Setup

- cosine coil (400nT)
- solenoid
- gradients coils

Polarized Helium

university of groningen VSI

219 km

³He/¹²⁹Xe Measurement

October 2015

polarized ³He and ¹²⁹Xe transported from Mainz by car

T₁ (¹²⁹Xe) transport cell ~7h

M. Repetto et al, J Mag. Reson. 252, 163(2015)

³He/¹²⁹Xe Measurement

³He / ¹²⁹Xe clock comparison to get rid of magnetic field drifts

Main Issue: Systematics e.g. Electric Field

How to measure static Electric Field inside glass bulb (no electrodes)?

J.O. Grasdijk, PhD thesis, Groningen (2018)

⇒ We can follow dc field > 20h !

Main Issue: Systematics just some possibilities

	Frequency Shift	Co-	Flipping	Fitting	Max. False
	Frequency Shift	Magnetometry		Routine	EDM at 800 V/cm
Earth Rotation [Sec. 5.4.3]	$2.9 imes 10^{-5} \text{ rad/s}$	No	Yes	Yes	*) $1.2 \times 10^{-23} e cm$
Center of Mass [Sec. 5.1.2]	$-5.5 imes 10^{-8} \text{ rad/s}$	No	Yes	Yes	$-2.3\times10^{-26}~e{\rm cm}$
Bloch-Siegert Shift [Sec. 5.4.1]	$< 1 \times 10^{-10} \ \mathrm{rad/s}$	No	No	Yes	$<8\times10^{-30}~e{\rm cm}$
Chemical Shift [Sec. 5.4.4]	$< 1 \times 10^{-10} \ \mathrm{rad/s}$	No	Yes	Yes	$<8\times10^{-30}~e{\rm cm}$
Geometric Phaseshift [Sec. 5.4.2]	$9.4 imes 10^{-13} \text{ rad/s}$	No	No	No	$3.8\times 10^{-31}~e{\rm cm}$
Leakage Current (10 pA) [Sec. 5.3.1]	$1.5 imes 10^{-14} \text{ rad/s}$	No	No	No	**) $6 \times 10^{-33} ecm$
Motional Magnetic Field [Sec. 5.1.3]	$2.3 \times 10^{-16} \text{ rad/s}$	No	No	No	$9.3\times 10^{-35}~e{\rm cm}$
Magnetic Gradient Shift [Sec. 5.1.4]	$1.0\times 10^{-16}~{\rm rad/s}$	No	Yes	Yes	$4.2\times 10^{-35}~e{\rm cm}$

J.O. Grasdijk, PhD thesis, Groningen (2018)

*) effect $\mu \overrightarrow{Bx w} \Rightarrow$ "can be treated"

**) effects worrisome \Rightarrow "can be treated"

Results First Phase EDM Search on 129Xe

groningen / VSI

EDM Experiments vs. Time

groningen / VSI

Precision Measurements with Molecules

- Heavy diatomic molecules (*SrF, RaF, BaF, ...*) are suited for precision measurements (parity violation, eEDM, ..)
- Large enhancement due to almost degenerate rotational levels
 N J Parity

Ultracold molecules by a
 traveling wave decelerator and laser cooling

university of VSI

Benefit from the long interaction time provided by a cold, trapped sample

C. Meinema, J. v/d Berg, S. Hoekstra

Traveling wave decelerator

C. Meinema, J. v/d Berg, S. Hoekstra

Traveling wave decelerator

5 m of decelerator 10 modules of 50 cm 3360 ring electrodes diameter electrode: 4 mm

C. Meinema, J. v/d Berg, S. Hoekstra

SrF Slowed Down and Guided

- 8 of 8 amplifiers
- 4 m machine

J. E. vd Berg at al, J. Mol. Spec. 300, 22 (2014) S.C. Mathavan et al., Chem.Phys.Chem. 17,3709 (2016)

S. Hoekstra et al.

The way to go for eEDM below 10⁻²⁹ ecm

NWO programme - <u>S. Hoekstra</u>, H. Bethlem, A, Borschevsky, K. Jungmann, (2017-2022) R. Timmermans, W. Ubachs, L. Willmann

Goal: limit < 10⁻²⁹ e cm on electron EDM

SUMMARY

Testing Fundamental Symmetries at the Atomic Scale

- A few selected Topics
 - → Focus on Transformativity
- ➢ C, P, CP, CPT
 - \rightarrow Precision Test of Standard Model
- Hand in Hand with Applications
 Atomic Parity violation & Precision Clocks
- Search for permanent Electric Dipole Moments

 Exploiting & Testing Symmetries
 - → Challenge New Physics Models

THANKS to ALL Members of the collaborations !

THANK YOU !

