

MVD SPD

Status report of the readout architecture design for the PANDA silicon pixel detectors

Outline

- * ToPiX version 3 architecture
- * Clock frequency issues
- * Data transmission
- * Power supplies

ToPiX specs

- * Pixel size : $100 \mu m \times 100 \mu m$
- * Chip active area: 11.4 mm × 11.6 mm (116 rows, 110 cols)
- * dE/dx : Time over Threshold, up to 100 fC
- * Analog noise floor : < 32 aC (200 e⁻)
- → System clock frequency : 155÷160 MHz
- Max event and data rates: 12.3 MHz/cm² 815 Mb/s/chip (?)
- * Power consumption : < 500 mW/cm²
- * Total Ionizing Dose : < 100 kGy
- * Equivalent neutron fluence : < 5·10¹⁴ 1MeV n_{EO}/cm²

ToPiX v2

- Full pixel cell (analogue + digital)
- Two folded columns with 128 cells
- Two columns with 32 cells
- 5x2 mm² die area
- CMOS 0.13 μm LM technology
- Working frequency: 50 MHz
- Dice-based SEU resistant FFs
- Tests:
 - → test bench
 - → with a sensor and a radiation source
 - \rightarrow TID and SEU

ToPiX v3

New prototype in 0.13 µm under development – main changes :

- * BEOL option: DM
- * Standard cells library : IBM
- * Clock frequency: 155÷160 MHz
- * SEU protection: triple redundancy
- * More compact analog part

System aspects

- Time resolution: 1.8 ns r.m.s. @ 160 MHz
- Pixel readout time: 8 clock cycles (50 ns)
- ToT gain: 62.5 ns/fC
- Pixel dead time (a) 1.3 fC: \sim 90 ns
- Pixel dead time @ 100 fC : ~6 µs
- Chip active area: 1.32 cm²
- Bits per event: 50

Event loss probability *ToT contribution*

Data rate vs event rate

MVD pixel requirements

Basic considerations:

- in a triggerless environment SPDs generate a lot of data (currently 50 bits/hit : address+time reference+ToT)
 - to fit space and material requirements, we need electrical to optical conversion as close as possible to the detector
- electronics has to be radiation hard
 - no COTS components can be used
 - looking for solution in the HEP community, especially at development for LHC-sLHC

Clock issue

- 1. ToPiX is (almost) completely synchronous
 - * most performances are defined by the clock (time resolution, dead time, transmission bandwidth, ToT gain)
 - * we do need to freeze the clock frequency (at least $\pm 10\%$)
- 2. LHC electronics is based on a 40 MHz clock
 - * in principle many ASICs can work at different frequencies but it is not guarantee (ref. QPLL)
 - * for pixel it would be safer to for a 2^N×40 MHz clock
 - * any other PANDA detectors plan to use LHC electronics?

GBT project

GBT chipset

Radiation tolerant chipset:

- * GBTIA : Transimpedance optical receiver
- * GBLD : Laser driver
- * GBTx : Data and Timing Transceiver
- * GBT-SCA: Slow control ASIC

Supports:

- * Bidirectional data transmission
- * Bandwidth:
 - \rightarrow Line rate : 4.8 Gb/s
 - → Effective : 3.36 Gb/s

Target Applications:

- * Data readout
- * TTC
- * Slow control and monitoring links

Radiation Tolerance:

- * Total dose
- Single Event Upset

- GBLD: 5 Gb/s laser driver
- Modulation current : 2÷24 mA
- Bias current: 2÷43 mA
- Pre-emphasis/de-emphasis current: 0÷12 mA
- I2C digital control

Data transmission

Sezione di Torino

Option 1

Option 2

Electrical link

E-link

- * Under development for the GBT interface
- * Up to 320 Mbit/s
- * Direct connection to the GBT
- * More cables, less design work

Custom design

- * Target: 1 Gbit/s
- * Common development : PANDA MVD and NA62 GTK
- * More design work, less cables

Power supply

- * Deep submicron technologies requires lower voltages (0.35 $\mu m \rightarrow 3.3 \text{ V}, 0.25 \ \mu m \rightarrow 2.5 \text{ V}, 0.13 \ \mu m \rightarrow 1.2 \text{ V}$)
- * Power saving (~same current, lower voltage) but...
 - power drop on lines and voltage regulator become critical!
- * $500 \text{ mW/}1.2 \text{ V} = 420 \text{ mA} \times 3 \Omega = 1.26 \text{ V} \rightarrow 51\%$ efficiency loss for cabling only
- * Two solutions are under study in the sLHC community:
 - serial powering
 - DC-DC converters

Serial powering

- * ATLAS (not official) choice
- * N modules are connected in series with a N×V_{DD} voltage
- * Shunt regulator to ensure voltage drop (keep current constant)
- * AC connection to the detector and to the DAQ
- * Three configurations:
 - W: on chip shunt regulator and shunt transistor
 - M: on chip shunt transistor, external shunt regulator
 - SPi ext : external shunt regulator and shunt transistor

DC-DC converter

- * CMS official 1st choice
- * Direct voltage conversion via PWM
- * Commonly used in consumer electronics
- * High efficiency
- * Issues for HEP experiments:
 - * noise
 - inductors in magnetic field

MVD power scheme

- * Just started looking at the issue
- * No manpower for a custom solution
- * Very first feeling : DC-DC looks better
- * PANDA and sLHC timeschedule are similar
 - → we can wait and see who will be the winner...

Conclusions

- Design of the ToPiX v3 started
 - * still under the sword of Damocles of the clock frequency...
- * Ongoing studies on the full architecture:
 - * electrical data transmission
 - * optical conversion and DAQ interface
 - * power supply