Radiative and weak decays of decuplet baryons

Måns Holmberg

Uppsala University

Stockholm, June 2018

Outline

- Chiral Perturbation Theory
- Radiative two-body decays
- Radiative three-body decays
- Weak three-body decays

Chiral symmetry

 The three lightest quarks are approximate massless on a hadronic scale

$$\left(egin{array}{c} m_u \ m_d \ m_s \end{array}
ight) \ll 1\,{
m GeV} \leq \left(egin{array}{c} m_c \ m_b \ m_t \end{array}
ight)$$

 The Lagrangian of massless quark splits up in a purely righthanded and a purely left-handed part

$$\bar{q}Mq = \bar{q}_R Mq_L + \bar{q}_L Mq_R$$

- $SU(3)_L \times SU(3)_R \times U(1)_V$ symmetry in chiral limit
- Symmetry is spontaneously broken to $SU(3)_V \times U(1)_V$
- → Expect 8 Goldstone bosons ⇒ Pseudoscalar meson octet
 - Good starting point for low-energy QCD

Chiral perturbation theory (χPT)

An effective field theory

$$\mathcal{L} = \mathcal{L}^{(1)} + \mathcal{L}^{(2)} + \mathcal{L}^{(3)} + \cdots$$

- Neglect irrelevant degrees of freedom
- Expand in powers of momenta and quark masses
- Rely on symmetries to construct the effective Lagrangian
- → Chiral symmetry heavily reduces number of terms!
 - A power counting scheme determines the relevance of each diagram
 - Predictive power once low energy constants (LECs) are known
 - External sources are naturally introduced: v^{μ} , a^{μ} , s, p

χ PT for baryons

• The octet baryons are collected in

$$B = \begin{pmatrix} \frac{1}{\sqrt{2}} \sum^{0} + \frac{1}{\sqrt{6}} \Lambda & \sum^{+} & p \\ \sum^{-} & -\frac{1}{\sqrt{2}} \sum^{0} + \frac{1}{\sqrt{6}} \Lambda & n \\ \Xi^{-} & \Xi^{0} & -\frac{2}{\sqrt{6}} \Lambda \end{pmatrix}$$

The decuplet is expressed by a totally symmetric flavor tensor

$$\begin{split} &\mathcal{T}^{111} = \Delta^{++}, \quad \mathcal{T}^{112} = \frac{1}{\sqrt{3}} \, \Delta^{+}, \\ &\mathcal{T}^{122} = \frac{1}{\sqrt{3}} \, \Delta^{0}, \quad \mathcal{T}^{222} = \Delta^{-}, \\ &\mathcal{T}^{113} = \frac{1}{\sqrt{3}} \, \Sigma^{*+}, \quad \mathcal{T}^{123} = \frac{1}{\sqrt{6}} \, \Sigma^{*0}, \quad \mathcal{T}^{223} = \frac{1}{\sqrt{3}} \, \Sigma^{*-}, \\ &\mathcal{T}^{133} = \frac{1}{\sqrt{3}} \, \Xi^{*0}, \quad \mathcal{T}^{233} = \frac{1}{\sqrt{3}} \, \Xi^{*-}, \quad \mathcal{T}^{333} = \Omega \, . \end{split}$$

5

Leading order (LO) Lagrangian for baryons

$$\begin{split} \mathcal{L}_{\text{baryon}}^{(1)} &= \text{tr} \left(\bar{B} \left(i \not \!\! D - m_{(8)} \right) B \right) \\ &+ \bar{T}_{abc}^{\mu} \left(i \gamma_{\mu\nu\alpha} (D^{\alpha} T^{\nu})^{abc} - \gamma_{\mu\nu} \, m_{(10)} \left(T^{\nu} \right)^{abc} \right) \\ &+ \frac{D}{2} \, \text{tr} (\bar{B} \, \gamma^{\mu} \, \gamma_{5} \left\{ u_{\mu}, B \right\} \right) + \frac{F}{2} \, \text{tr} (\bar{B} \, \gamma^{\mu} \, \gamma_{5} \left[u_{\mu}, B \right] \right) \\ &+ \frac{h_{A}}{2\sqrt{2}} \, \left(\epsilon^{ade} \, \bar{T}_{abc}^{\mu} \left(u_{\mu} \right)_{d}^{b} \, B_{e}^{c} + \epsilon_{ade} \, \bar{B}_{c}^{e} \left(u^{\mu} \right)_{b}^{d} \, T_{\mu}^{abc} \right) \\ &- \frac{H_{A}}{2} \, \bar{T}_{abc}^{\mu} \gamma_{\nu} \gamma_{5} \left(u^{\nu} \right)_{d}^{c} \, T_{\mu}^{abd} \end{split}$$

ullet The Goldstone bosons (related to u_{μ}) are encoded in

$$\Phi = \Phi^\dagger = \left(egin{array}{ccc} \pi^0 + rac{1}{\sqrt{3}} \, \eta & \sqrt{2} \, \pi^+ & \sqrt{2} \, K^+ \ \sqrt{2} \, \pi^- & -\pi^0 + rac{1}{\sqrt{3}} \, \eta & \sqrt{2} \, K^0 \ \sqrt{2} \, K^- & \sqrt{2} \, \overline{K}^0 & -rac{2}{\sqrt{3}} \, \eta \end{array}
ight) \, .$$

Radiative decays $B^*(J=3/2) \rightarrow B\gamma$

Interactions with photons can be studied by

$$v^{\mu}
ightarrow e A^{\mu} \left(egin{array}{ccc} rac{2}{3} & 0 & 0 \ 0 & -rac{1}{3} & 0 \ 0 & 0 & -rac{1}{3} \end{array}
ight) \,.$$

ullet At NLO, only one term contributes $(f_-^{\mu
u}=0)$

$$\mathcal{L}_{\rm int}^{(2)} = i c_M \epsilon_{\rm ade} \bar{B}_c^{\rm e} \gamma_\mu \gamma_5 (f_+^{\mu\nu})_b^{\rm d} T_\nu^{\rm abc} + i c_E \epsilon_{\rm ade} \bar{B}_c^{\rm e} \gamma_\mu (f_-^{\mu\nu})_b^{\rm d} T_\nu^{\rm abc} + {\rm h.c.}$$

- \rightarrow Magnetic vector transition form factor related to c_M .
- → Electric axial-vector transition form factor related to c_E.
 - The partial decay width at tree level is

$$\Gamma_{B^* \to \gamma B} = \frac{c^2}{6\pi} p_{\rm cm}^3 \frac{E_B + m_{B^*}}{m_{B^*}} \, .$$

Radiative decays $B^*(J=3/2) \rightarrow B\gamma$

We can fit c_M to data and make predictions

Decay	$c/(c_M e)$	BR [%]	$ c_M $ [GeV ⁻¹]
$\Delta o N\gamma$	$2/\sqrt{3}$	$0.60 {\pm} 0.05$	2.00±0.03
$\Sigma^{*+} o \Sigma^+ \gamma$	$-2/\sqrt{3}$	0.70 ± 0.17	1.89 ± 0.08
$\Sigma^{*-} o \Sigma^- \gamma$	0	< 0.024	
$\Sigma^{*0} o \Sigma^0 \gamma$	$1/\sqrt{3}$	$0.18 {\pm} 0.01$	_
$\Sigma^{*0} o \Lambda \gamma$	-1	$1.25 {\pm} 0.13$	1.89 ± 0.05
$\Xi^{*0} ightarrow \Xi^0 \gamma$	$-2/\sqrt{3}$	$\textbf{4.0} {\pm} \textbf{0.3}$	-//
$\Xi^{*-} \rightarrow \Xi^- \gamma$	0	< 4	-

$$\Sigma^{*-} \to \Sigma^- \gamma$$
 , $\Xi^{*0} \to \Xi^0 \gamma$ vanishes due to U-spin symmetry

(predictions in boldface)

M. Holmberg, SL, arXiv:1802.05168 [hep-ph], to appear in EPJ A

Axial-vector transition form factors

- Interesting for scattering neutrino-nucleon to electron-Delta
- Low energies: want to know deviation from LO result
 ∴ LEC CF

• Vector and axial-vector transition form factors contribute also to $\Delta \to N\gamma$ and $\Delta \to N\pi\gamma$, respectively

Axial-vector TFFs and three-body decays

Problems:

- Needs to be disentangled from bremsstrahlung
- Hard to measure for broad Delta

Axial-vector TFFs and three-body decays

Problems:

- Needs to be disentangled from bremsstrahlung
- Hard to measure for broad Delta

 → Get some clue from radiate three-body decays of hyperons, e.g. cascades

 π

Three body decays $B^*(J=3/2) \rightarrow B\gamma\pi$

Three body decays $B^*(J=3/2) \rightarrow B\gamma\pi$

Preliminary predictions (none of these are measured!)

Decay	BR	Decay	BR
$\Sigma^{*+} \rightarrow \Sigma^{+} \pi^{0} \gamma$	1.1×10^{-6}	$\Xi^{*-} ightarrow \Xi^{-} \pi^{0} \gamma$	7.9×10^{-6}
$\Sigma^{*+} ightarrow\Sigma^0\pi^+\gamma$	$3.6 imes 10^{-5}$	$\Xi^{*-} ightarrow \Xi^0 \pi^- \gamma$	$1.3 imes 10^{-3}$
$\Sigma^{*+} ightarrow \Lambda \pi^+ \gamma$		$\Xi^{*0} o \Xi^- \pi^+ \gamma$	1.1×10^{-3}
$\Sigma^{*-} ightarrow\Sigma^-\pi^0\gamma$	6.0×10^{-7}	$\Xi^{*0} ightarrow\Xi^0\pi^0\gamma$	1.8×10^{-6}
$\Sigma^{*-} ightarrow \Sigma^0 \pi^- \gamma$	4.3×10^{-5}	$\Delta^{++} ightarrow p \pi^+ \gamma$	1.7×10^{-3}
$\Sigma^{*-} ightarrow \Lambda \pi^- \gamma$		$\Delta^+ o p \pi^0 \gamma$	6.6×10^{-5}
$\Sigma^{*0} o \Sigma^+ \pi^- \gamma$	5.7×10^{-5}	$\Delta^+ o n \pi^+ \gamma$	7.4×10^{-4}
$\Sigma^{*0} ightarrow\Sigma^-\pi^+\gamma$	3.2×10^{-5}	$\Delta^0 op\pi^-\gamma$	$1.0 imes 10^{-3}$
$\Sigma^{*0} ightarrow\Sigma^0\pi^0\gamma$	$2.5 imes 10^{-8}$	$\Delta^0 o n \pi^0 \gamma$	7.2×10^{-6}
$\Sigma^{*0} o \Lambda \pi^0 \gamma$	3.5×10^{-6}	$\Delta^- ightarrow n \pi^- \gamma$	2.3×10^{-3}

(Photon energy cut at 25 MeV)

Three body decays $B^*(J=3/2) o B\gamma\pi$

Three body decays $B^*(J=3/2) \rightarrow B\gamma\pi$

Blows up when photon energy approaches zero

$$m^2(\pi B) = M_{B^*}^2 - 2M_{B^*}E_{\gamma}$$

Three body decays $B^*(J=3/2) \rightarrow B\gamma\pi$

• Consider $\Xi^{*0}(1530) \rightarrow \Xi^-\pi^+\gamma$

• Branching ratio $1.3 \cdot 10^{-3}$ (cut off photon energy at 25 MeV)

Weak decays $B^*(J=3/2) \rightarrow Be\bar{\nu}$

Interactions with W-bosons obtained by

$$I_{\mu} = v_{\mu} - a_{\mu}
ightarrow -rac{{\cal g}_w}{\sqrt{2}}W_{\mu}^+ \left(egin{array}{ccc} 0 & V_{ud} & V_{us} \ 0 & 0 & 0 \ 0 & 0 & 0 \end{array}
ight) + ext{h.c.}$$

• At NLO, decay depends on 3 LECs (c_M, c_E, h_A)

Decay $\Omega^- o \Xi^0 ar u_e e^-$

- The BR of $\Omega^- \to \Xi^0 \bar{\nu}_e e^-$ is known: $(0.56 \pm 0.28)\%$
- Two solutions of the LEC CE

$$\frac{\Gamma_{\Omega^- \to \Xi^0 \bar{\nu}_e e^-}}{\Gamma_{\text{tot}}} = \alpha h_A^2 + \beta c_M^2 + \gamma c_E^2 + \delta h_A c_E$$

Decay $\Omega^- o \Xi^0 ar{ u}_e e^-$

The Dalitz plot distinguishes between the two solutions of c_E

Summary

- ullet $\chi {\rm PT}$ is a versatile tool for describing low-energy QCD
- Predicts a 4% BR of $\Xi^{*0} \to \Xi^0 \gamma$
- Radiative three-body decays can be used to learn more about several LECs
- → However, BR are generally small, especially for neutral final states
 - The BR of $\Xi^{*-} \to \Xi^0 \pi^- \gamma$, $\Xi^{*0} \to \Xi^- \pi^+ \gamma$ are of order 10^{-3}
- \hookrightarrow Can be used to pin down c_E
 - ullet The weak decay $\Omega^- o \Xi^0 e^- ar
 u_e$ can also be used to pin down c_E
- → Need higher quality measurements

Backup slide: U-spin

No explicit flavor breaking at NLO, as $\mathcal{M} \sim m_G^2 \sim \mathcal{O}(p^2)$ U-spin, which interchanges d and s quarks, is conserved Need $\mathcal{O}(p^4)$ terms $\to N^3 LO$ at tree level or $N^2 LO$ loops

