Update on the $\overline{p}p \to \overline{\Xi}\Xi$ Analysis

Walter Ikegami Andersson

PANDA collaboration meeting June 04-08, 2018 Stockholm

Motivation

- Until now: feasibility studies of $\overline{p}p \to \overline{\Lambda}\Lambda$
- Spin observables extraction using spin density matrix formalism with spin $1/2 \to 1/2 + 0$ decay $\Lambda \to p\pi$
- The $\Xi \to \Lambda \pi$ decay has same quantum numbers \to Same formalism can be used!

In this presentation

- Formulate selection criteria
- Use MC truth matching to benchmark signal/combinatorial background
- DPM background not considered (yet)

Simulation parameters

Simulations are done with:

- Release dec17p2b.
- fairsoft_may16p1
- Fairroot v17.10b

Decay of Ξ handled by Geant4:

- Ensures propagation of ≡ in B-field
- Event sample: 8726

Parameters:

- Forward-peaking distribution
- Antiproton beam: $p_{\overline{p}} = 7.0 \text{ GeV/c}$
- Full Detector Setup
- Ideal Mass Hypothesis for Kalman Filter
- Ideal Pattern Recognition
- Ideal Particle Identification

Preselection using Decay Tree Fit

Preselection criteria:

- Combine $p\pi^-$ to form Λ candidates
- Select $|m_{\Lambda} M(p\pi^{-})| < 0.1 \text{ GeV/c}^{2}$
- Combine $\Lambda \pi^-$ to form Ξ^- candidates
- Select $|m_{\Xi} M(\Lambda \pi^{-})| < 0.1 \text{ GeV/c}^{2}$
- DTF $\Xi^- \to \Lambda \pi^- \to p \pi^- \pi^-$
- Reject candidate if $P(DTF(\Lambda, \pi^-)) < 0.01$
- Repeat for $\overline{\Xi}^+$ candidates
- Combine $\overline{\Xi}^+\Xi^-$ to form $\overline{p}p$ system

Decay Tree Fit of $\Xi^- \to \Lambda \pi^- \to p \pi^- \pi^-$

Decay tree fit of Ξ formulated in following way:

- Set Ξ and Λ decay points as unknown variables
- Mass of Λ constrained to pdg value

Advantage over cascaded vertex- and mass fits:

- Two vertex fits and a mass fit performed simultaneously.
- All constraints being respected at the same time.

Errors of vertex positions in $\Xi^- \to \Lambda \pi^- \to p \pi^- \pi^-$

Preselection Efficiencies

Sample	True	False	T/F	ϵ
$\overline{\Lambda}$	4850	4804	1.01	56%
Λ	4995	5488	0.91	57%
\equiv^+	3716	3720	1.00	43%
Ξ	3833	4078	0.94	44%
$\equiv^+\equiv^-$	919	129	7.12	11%

- S/B = 7.12 not sufficient for spin observables extraction Further selection necessary
- \bullet Need to select one $\overline{\Xi}^+\Xi^-$ candidate per event

Final selection

Final selection criteria:

- Vertex fit ∃⁺∃⁻
 To propagate variables from vertex to IP
- Four constraint fit $\Xi^+\Xi^-$
- Select $r_0(\overline{\Xi}^+\Xi^-) < 1$ cm
- Select > 3 rad
- Select $\Delta z = z(\Lambda) z(\Xi) > 0$ cm
- Choose $\overline{\Xi}^+\Xi^-$ pair with smallest 4C fit χ^2

Final selection

- For correctly combined events, Λ decay point downstream $w.r.t \equiv$ decay point $\Delta z > 0$
- ullet Combinatorial background Δz centered around 0

Final selection

Sample	True	False	T/F	ϵ
$\overline{\Lambda}$	4850	4804	1.01	56%
Λ	4995	5488	0.91	57%
=+	3716	3720	1.00	43%
Ξ-	3833	4078	0.94	44%
<u>=</u> +=-	919	129	7.12	11%
Final ≡ ⁺ ≡ ⁻	678	4	170	7.8%

- Efficiency of 7.8% after final selection
- No contamination of combinatorial background S/B=170. Suitable for spin observables extraction

Ξ Invariant Mass

- Using output variables of 4C fit
- $\overline{\Xi}^+$ mass resolution: $\sigma = 3.2 \text{ MeV/c}^2$ Ξ^- mass resolution: $\sigma = 3.3 \text{ MeV/c}^2$

Conventional fitting tools

Comparison with cascade of fits

Preselection and event reconstruction

Preselection criteria:

- Combine $p\pi^-$
- Select $|m_{\Lambda} M(p\pi^{-})| < 0.1 \text{ GeV/c}^{2}$
- Vertex & Mass fit, reject candidate if $P(\text{Vtx}(p, \pi^-)) < 0.01$ $P(\text{Mass}(p, \pi^-)) < 0.01$
- Combine $\Lambda \pi^-$
- Select $|m_{\Xi} M(\Lambda \pi^{-})| < 0.1 \text{ GeV/c}^{2}$
- Vertex fit, reject candidate if $P(\text{Vtx}(\Lambda, \pi^-)) < 0.01$
- Repeat for $\overline{\Xi}^+$ candidates
- Combine $\overline{\Xi}^+\Xi^-$ to form $\overline{p}p$ system

Conventional fitting tools

Decay Tree Fit

Conventional Fits

Sample	True	False	T/F	Sample	True	False	T/F
$\overline{\Lambda}$	4850	4804	1.01	$\overline{\Lambda}$	4850	4804	1.01
Λ	4995	5488	0.91	Λ	4995	5488	0.91
\=_+	3716	3720	1.00	≣+	3688	1355	2.76
Ξ-	3833	4078	0.94	Ξ-	3782	1468	2.58
Ξ+Ξ−	919	129	7.12	=+=-	1382	885	1.56
Final $\Xi^+\Xi^-$	678	4	170	Final <u>=</u> +==	895	42	21.3

- + Overall efficiency higher using conventional fits Conventional fits: 10%, Decay Tree Fit: 7.8%
 - Worse supperssion of combinatorial background

Conventional fitting tools

Comparison of $\overline{\Xi}^+$ momentum pull distribution from 4C fit

- Pull variables should be $\mathcal{N}(0,1)$ distributed
- Pulls with conventional fitting tools larger deviation and bias
 - → Suggest poorer quality of input variables for 4C fit

Summary & Outlook

Summary:

- Simulation and analysis tools updated
- Exclusive reconstruction of $\Xi^+\Xi^-$, $\Xi\to\Lambda$, $\Lambda\to p\pi$
 - Efficiency: $\epsilon = 7.8 \%$
 - Signal/background: S/B = 170 (not considering DPM background)
 - $\overline{\Xi}^+$ mass resolution: $\sigma = 3.2 \text{ MeV/c}^2$ Ξ^- mass resolution: $\sigma = 3.3 \text{ MeV/c}^2$

Outlook:

- Simulation of DPM background $\sigma(\overline{p}p \to \text{inelastic}) = 44.5 \cdot 10^3 \ \mu\text{b}, \ \sigma(\overline{p}p \to \overline{\Xi}^+ \Xi^-) = 2 \ \mu\text{b}$
- Spin observables extraction

Summary & Outlook

Summary:

- Simulation and analysis tools updated
- Exclusive reconstruction of $\overline{\Xi}^+\Xi^-$, $\Xi \to \Lambda$, $\Lambda \to p\pi$
 - Efficiency: $\epsilon = 7.8 \%$
 - Signal/background: S/B = 170 (not considering DPM background)
 - \equiv ⁺ mass resolution: $\sigma = 3.2 \text{ MeV/c}^2$ \equiv ⁻ mass resolution: $\sigma = 3.3 \text{ MeV/c}^2$

Outlook:

- Simulation of DPM background $\sigma(\overline{p}p \to \text{inelastic}) = 44.5 \cdot 10^3 \ \mu\text{b}, \ \sigma(\overline{p}p \to \overline{\Xi}^+ \Xi^-) = 2 \ \mu\text{b}$
- Spin observables extraction

Thank you for your attention!

Backup