Observation of spin polarization in $e^+e^- \to \Lambda\bar{\Lambda}$ at BESIII

Cui Li for the BESIII Collaboration

Department of Physics and Astronomy Uppsala University

2018-06-06 PANDA Collaboration Meeting Stockholm University

Outline

- ☐ The BESIII experiment
- $lue{}$ Observation of spin polarization in $e^+e^-
 ightarrow \Lambda ar{\Lambda}$ at BESIII
 - $\rightarrow \Lambda \bar{\Lambda}$ decay asymmetry parameters
 - > Time-like Λ electromagnetic form factors
- Summary

Beijing Electron Positron Collider (BEPC)

BEijing Spectrometer (BES)

Data collected at BESIII

- $lue{}$ World largest data sample of $J/\psi, \psi(2S)$ and $\psi(3770)$
- ☐ Unique data sample at XYZ (charmonium-like resonances) region
- ☐ Can cover 0-4.6 GeV from annihilation or ISR

$$e^+e^- o \gamma^* o J/\psi o \Lambda\bar{\Lambda}$$

- \square Process described by two complex numbers: magnetic G_M and electric G_F form factors.
- ☐ Two real parameters:
 - $> \alpha_{\psi}$ angular distribution
 - $ightharpoonup \Delta \Phi = arg(G_E/G_M)$ the phase between the two form factors

Dubnickova, Dubnicka, Rekalo Nuovo Cim. A109 (1996) 241 Gakh, Tomasi-Gustafsson NPA771 (2006) 169 Czyz, Grzelinska, Kuhn PRD75 (2007) 074026 Fäldt EPJ A51 (2015) 74; EPJ A52 (2016)141 Fäldt, Kupsc PLB772 (2017) 16

$$lacksquare$$
 $lpha_{\psi}$ well known

$$\Box d\Gamma/d\Omega \propto 1 + \alpha_{\psi} \cos^2 \theta$$

BESIII,PRD 95, 052003 (2017)

ΔΦ never considered before

Baryon polarization in e^+e^- annihilation

 $J/\psi \rightarrow \Lambda \bar{\Lambda}$

$$e^+e^- o (\Lambda o p\pi^-)ar{\Lambda}$$

Hyperon polarization can be determined using the angular distribution of the daughter particle.

Exclusive decay distributions for

$$e^+e^- \to (\Lambda \to p\pi^-)(\overline{\Lambda} \to \overline{p}\pi^+)$$
 $e^+e^- \to (\Lambda \to p\pi^-)(\overline{\Lambda} \to \overline{n}\pi^0)$

$$d\Gamma \propto \mathcal{W}(\boldsymbol{\xi})d\boldsymbol{\xi} = \mathcal{W}(\boldsymbol{\xi})d\cos\theta_{\Lambda}d\Omega_{1}d\Omega_{2} \qquad \boldsymbol{\xi} : (\cos\theta_{\Lambda}, \Omega_{1}, \Omega_{2})$$

$$\Lambda \rightarrow p\pi^{-}: \Omega_{1} = (\cos\theta_{1}, \phi_{1}) \qquad \alpha_{1} \rightarrow \alpha_{-}$$

$$\bar{\Lambda} \rightarrow \bar{p}\pi^{+}(or \,\bar{n}\pi^{0}): \Omega_{2} = (\cos\theta_{2}, \phi_{2})$$

$$\bar{\Lambda} \rightarrow \bar{n}\pi^{0}: \alpha_{2} \rightarrow \bar{\alpha}_{0} \qquad \bar{\Lambda} \rightarrow \bar{p}\pi^{+}: \alpha_{2} \rightarrow \alpha_{+}$$

$$\begin{split} \mathcal{W}(\xi) &= 1 + \alpha_{\psi} \cos^2\!\theta_{\Lambda} \\ &+ \alpha_{1}\alpha_{2} \left(\sin^2\!\theta_{\Lambda} \sin\theta_{1} \sin\theta_{2} \cos\phi_{1} \cos\phi_{2} + \cos^2\!\theta_{\Lambda} \cos\theta_{1} \cos\theta_{2} \right) \\ &+ \alpha_{1}\alpha_{2} \sqrt{1 - \alpha_{\psi}^{2}} \cos(\Delta\Phi) \left\{ \sin\theta_{\Lambda} \cos\theta_{\Lambda} \left(\sin\theta_{1} \cos\theta_{2} \cos\phi_{1} + \cos\theta_{1} \sin\theta_{2} \cos\phi_{2} \right) \right\} \\ &+ \alpha_{1}\alpha_{2} \left(\cos\theta_{1} \cos\theta_{2} - \sin^{2}\!\theta_{\Lambda} \sin\theta_{1} \sin\theta_{2} \sin\phi_{1} \sin\phi_{2} \right) \\ &+ \sqrt{1 - \alpha_{\psi}^{2}} \sin(\Delta\Phi) \sin\theta_{\Lambda} \cos\theta_{\Lambda} \left(\alpha_{1} \sin\theta_{1} \sin\phi_{1} + \alpha_{2} \sin\theta_{2} \sin\phi_{2} \right) \end{split}$$

Spin polarization
Fäldt, Kupsc PLB772 (2017) 16

$$J/\psi o (\Lambda o p\pi^-)(\bar{\Lambda} o \bar{p}\pi^+/\bar{n}\pi^0)$$

- A simultaneous maximum likelihood fit is performed to two data sets.
- Background events subtracted.

Fit results

Parameters	This work	is work Previous re		sults	
α_{ψ}	$0.461 \pm 0.006 \pm 0.007$	0.469 ± 0.027	BESIII		
$\Delta\Phi$ (rad)	$0.740 \pm 0.010 \pm 0.008$	_			
α_{-}	$0.750 \pm 0.009 \pm 0.004$		PDG	CD ag	
α_{+}	$-0.758 \pm 0.010 \pm 0.007$		PDG	CP asy	
$ar{lpha}_0$	$-9.692 \pm 0.016 \pm 0.006$	_		A_{C}	
A_{CP}	$-0.006 \pm 0.012 \pm 0.007$	0.006 ± 0.021	PDG	**(
$ar{lpha}_0/lpha_+$	$0.913 \pm 0.028 \pm 0.012$	_			

CP asymmetry:

$$A_{CP} = \frac{\alpha_- + \alpha_+}{\alpha_- - \alpha_+}$$

- $lue{}$ The result of α_{ψ} is consistent with previous BESIII measurement.
- $lue{}$ Spin polarization of Λ and $\bar{\Lambda}$ are observed.
- $lue{}$ The result of $lpha_-$ is ${\sim}5\sigma$ larger than the PDG value.

- \square Spin 1/2 baryons have magnetic G_M and electric G_E form factors
- Space-like EMFFs are real numbers
- Time-like EMFFs are complex numbers

The $\bar{p}p \rightarrow \bar{\Lambda}\Lambda$ at the PS185

- Fig. 4.30. Polarisation for $\bar{p}p \to \bar{\Lambda}\Lambda$ at various energies.
- Fig. 4.31. Spin observables for $\bar{p}p \rightarrow \bar{\Lambda}\Lambda$ at 1546 and 1695 MeV/c.
- Polarization and spin-correlation are observed. (Phys Rep 368 (2002) 119)
- ☐ Theoretical model of meson-exchange describes PS185 data well. (PRC 45, 931(1992); PRC46, 2158(1992))

Theoretical prediction of Time-like Λ form factors

Time-like Λ EMFFs studied by Haidenbauer and Meissner (PLB 761 (2016) 456-461)

- ☐ Restrict to one-photon exchange
- lacksquare PS185 data $par p o \Lambdaar\Lambda$ used as input to fit $\Lambdaar\Lambda$ potentials (Phys Rep 368 (2002) 119)
- \Box The ratio R and the phase $\Delta\Phi$ are model dependent
- Inconclusive BaBar results (PRD 76 (2007) 092006)

Energy scan 2014-2015 at BESIII

- □ World leading scan data between 2.0 GeV and 3.08 GeV
- Nucleon and hyperon EMFFs available

$$e^+e^- o (\Lambda o p\pi^-)(ar\Lambda o ar p\pi^+)$$
 at $\sqrt s=$ 2.396 GeV

- Large data sample for scan data
- $lue{}$ 555 events with 14 \pm 4 background

$$e^+e^- o (\Lambda o p\pi^-)(ar\Lambda o ar p\pi^+)$$
 at $\sqrt s=$ 2.396 GeV

 \Box Assume CP symmetry in this case $\alpha_{\Lambda} = -\alpha_{\bar{\Lambda}}$

 $J/\psi \rightarrow \Lambda \bar{\Lambda}$

☐ The decay distribution described in a simpler form

$$\mathcal{W}(\boldsymbol{\xi}) = \mathcal{T}_0(\boldsymbol{\xi}) + \eta \mathcal{T}_5(\boldsymbol{\xi})$$
$$-\alpha_{\Lambda}^2 \left(\mathcal{T}_1(\boldsymbol{\xi}) + \sqrt{1 - \eta^2} \cos(\Delta \Phi) \mathcal{T}_2(\boldsymbol{\xi}) + \eta \mathcal{T}_6(\boldsymbol{\xi}) \right)$$
$$+\alpha_{\Lambda} \sqrt{1 - \eta^2} \sin(\Delta \Phi) \left(\mathcal{T}_3(\boldsymbol{\xi}) - \mathcal{T}_4(\boldsymbol{\xi}) \right).$$

 \mathcal{T}_i are known functions of the five-dimensional $\boldsymbol{\xi}(\theta, \Omega_1(\theta_1, \phi_1), \Omega_2(\theta_2, \phi_2))$

$$R = |G_E/G_M| \ \Delta \Phi = \Phi_E - \Phi_M$$
 $\eta = rac{ au - R^2}{ au + R^2}$

Fäldt, Kupsc PLB772 (2017) 16

Fit results for $\sqrt{s} = 2.396 \text{ GeV}$

- ☐ A maximum likelihood fit is performed to the data set.
- With PDG value $\alpha_{\Lambda} = 0.642$
 - $R = |G_E/G_M| = 0.94 \pm 0.16 \pm 0.03$ > $\Delta \Phi = 42^{\circ} + 16^{\circ} + 8^{\circ}$.
- With BESIII value $\alpha_{\Lambda} = 0.75 \pm 0.01$
 - $R = 0.96 \pm 0.14 \pm 0.02$
 - $ightharpoonup \Delta \Phi = 37^{\circ} \pm 12^{\circ} \pm 6^{\circ}$

 $lue{}$ Spin polarization of Λ and $\bar{\Lambda}$ are observed.

Comparison of $|G_E/G_M|$ and $\Delta\Phi$

lacksquare Results of data support the $\Lambda ar{\Lambda}$ model I (Red line) PRC 45, 931(1992)

Results of the cross section and effective EMFFs

- $\Box \text{ The cross section } \sigma = \frac{N_{signal}}{L\epsilon(1+\delta)Br(\Lambda\to p\pi^-)Br(\bar{\Lambda}\to \bar{p}\pi^+)}$
 - > ISR and vacuum polarization factor $1 + \delta$ is from ConExc
 - \triangleright ϵ is the detection efficiency, L is the luminosity
 - $> \sigma = 119.0 \pm 5.3 (stat.) \pm 5.1 (sys.) \text{ pb}$
- - > $|G| = 0.123 \pm 0.003 (stat.) \pm 0.003 (sys.)$
 - $\alpha \approx \frac{1}{137}$ is the fine structure constant,

$$eta = \sqrt{1-rac{1}{ au}}$$
 is the velocity, $au = rac{q^2}{4m_{
m A}^2}$.

Previous measurements

	$\sigma(pb)$	G	Reference
BESIII $\sqrt{s} = 2.40 \text{GeV}$	128±19±18	$0.127\pm0.009\pm0.009$	Phys. Rev. D 97, 032013 (2018)
BaBar \sqrt{s} =2.35-2.40 GeV	176±34	0.152 ± 0.016	Phys. Rev. D 76, 092006 (2007)

Comparison of cross section

- A novel and interesting enhancement at the kinematic threshold was observed by BESIII.
- Results are consistent.

Summary

- $lue{}$ Hyperon spin polarization is observed in $e^+e^-
 ightarrow \Lambda ar{\Lambda}$
- ☐ The phase is measured for the first time.
- $lue{}$ With J/ψ
 - ightharpoonup The phase determined to be $42.3^{
 m o} \pm 0.62^{
 m o} \pm 0.5^{
 m o}$
 - > Decay asymmetry parameter of $\Lambda \to p\pi^-$ obtained to be $0.750 \pm 0.009 \pm 0.004$
 - ightharpoonup The *CP* odd observable $A_{CP}=-0.006\pm0.012\pm0.007$
- With scan data at 2.396 GeV

PDG value $\alpha_{\Lambda} = 0.642$

$$ightharpoonup R = |G_E/G_M| = 0.94 \pm 0.16 \pm 0.03$$

 $ightharpoonup \Delta \Phi = 42^{\circ} \pm 16^{\circ} \pm 8^{\circ}.$

BESIII value
$$\alpha_{\Lambda} = 0.75 \pm 0.01$$

$$ightharpoonup R = |G_E/G_M| = 0.96 \pm 0.14 \pm 0.02$$

$$ightharpoonup \Delta \Phi = 37^{\circ} \pm 12^{\circ} \pm 6^{\circ}$$

Thank you for your attention!