MuPix8: Current Status

 PANDA Collaboration Meeting 2018/2 – Luminosity Detector Session

> René Hagdorn Stockholm, June 5, 2018

MuPix8 in Bochum

- Two MuPix8 Sensorboards and two chips
- Survived smoke testing
- Software to control Sensorboard is working

René Hagdorn

2

Reminder (Lumi Session 18/1 at GSI)

- Written in C++, Qt for GUI designs
- Sensorboard interface:
 - Thresholds
 - Injections
 - Addresses
- Currently working on ChipDAC interface

		BoardDACs _ 🗆 🗙
n	TRB address MuPix address	Set MuPix address Read back MuPix address
	Threshold Settings	Injection Settings
	Thes low [mV]	Amplitude [V]
	Thres high [mV]	Duration [ns]
	Thres Pix [mV]	Frequency [Hz]
		Injection Mode
		Fixed Number • Continuous
		# of Injections
	Set Threshold DACs	
	Set Injection DAC	Start Injections
		Set Board DACs

René Hagdorn

MuPix8 Status

June 5, 2018

Injections

- DAC on Sensorboard to control injection voltage (0 1.8 V)
- Adjustable pulse width and frequency
- Continuous or fixed number mode

René Hagdorn

MuPix8 Status

June 5, 2018

Injections

- DAC on Sensorboard to control injection voltage (0 1.8 V)
- Adjustable pulse width and frequency
- Continuous or fixed number mode

René Hagdorn

June 5, 2018

Thresholds

- 3 Threshold DACs on Sensorboard (0 1.8 V)
- Difference between GUI values and measured voltages on board

MuPix8 Status

- Select hitbus and injection pixel, select AmpOut, set ChipDACs
- Two methods to send chip configuration
- Still in development
 - \rightarrow Use Heidelberg setup with StratixIV for first test measurements

SODA for Luminosity Detector

- Production of triggers and SODAnet information on TRB1
- Connection via optical link to SODAnet endpoint on TRB2
- Next step: Unpacker for SODAnet data from GbE connection

Time Sorting

- Sort hits by time on TRB
 - Usage of dual port RAM
 - Divided into segments to continuously write and read
 - Address is 8bit timestamp + 4bit counter → limit of 15bit per timestamp
 - Investigation of VHDL by Ann-Kathrin finished
- Next step: Write test benches

- Extensions to existing firmware
 - Link alignment to comma words in MuPix data stream
 - Unpacker
 - Sorting of hit and counter data
 - Removal of comma words
 - Hit sorter an digitizer
 - Sorting of hits with timestamps
 - Decoding of chip hit addresses to physical address

- Sensorboard functional, software to set thresholds and injections
 → Use Heidelberg setup to cross check
- SODAnet information distribution
- Time sorting of MuPix hit data on TRB
- Firmware extensions: Unpacker, data sorter

– Backup –

MuPix8 Setup with TRB

René Hagdorn

MuPix8 Status

The MuPix8 Chip

- Physical size: 19.5 × 10.8 mm²
- Active area: ~ 16.2 × 10.2 mm²
- Matrix: 200 × 128 Pixels divided into 3 Submatrices A: Source follower, B & C: current driver
- Pixel: 80 × 81 µm², single diode
- 4 LVDS links @ 1.25 Gbit/s
- Timewalk compensation by two-stage comparator scheme
- Temperature diode
- On chip state machine (works only if slowed down)

