Update on cooling and mechanics of the luminosity detector

Heinrich Leithoff

Helmholtz Institut Mainz

PANDA-Collaboration-Meeting Stockholm June 5, 2018

Helmholtz Institute Mainz

Overview

- status of the cooling system
- update on mechanical structure

Cooling system: General setup

	sensors	LDO Voltage	resistance in	Multiplexer
		regulator	flexcables	etc.
worst case	1120 W	320W	160W	$\sim \! 100 W$
likely case	370 W	110W	20W	$\sim \! 100 W$

- Total estimated heat load per half detector: ${\sim}1~\text{kW}\sim\!350~\text{W}$
- For cooling test: copper dummys and high power resistors

Half detector prototype

- production of halfplanes is finished
- First full half detector under preparation for cooling test
- First test in vacuum seems ok

Cooling test preparation

- PT100 sensors glued to half planes and copper dummies
- Resistors glued to copper dummies and connected
- Busbars prepared for installation

Mechanical setup: Beampipe installation

Three options for installing the inner beampipe:

- Glue everything outside, install everything at once
- Glue cone outside, connect cone and metal part in the box
- Install metal part, glue everything in the box.

All tricky.....

Summary and outlook

- production of half planes finished
- half plane prototype successfully tested
- new design vacuum box produced, first tests successful

What is next:

- extended test of new vacuum box
- test of half detector prototype
- extended cooling test
- production of final detector

Aluminum steel contact after cooling

after cutting:

after cooling to -40° C:

No gap between the materials, very good contact

Comparison of materials and processes

Test of the aluminum-diamond contact

- Setup with copper dummy
- Comparison of FEM results with measurements
- Test and comparison of several contact materials

FEM-simulation and measurement

- Simulated temperature difference $\sim 55^\circ C$
- Measured temperature difference (two Pt100): 50°C
- High radial temperature gradient (up to $2\frac{K}{mm}$)

Graphitfolie PC93 $\sim 0.88 \frac{^{\circ}C}{W} \sim 0.72 \frac{^{\circ}C}{W}$ kein Material H. Leithoff

Contact materials

H. Leithoff (HIM)

Contact materials 2

Upper limit for the material transition temperature rise:

Temperature Gradient

- Temperature gradient varies on the diamond
- High values near the cooling structure (> 1.5 $\frac{K}{mm}$)
- interesting measurements are in region with > 1 $\frac{K}{mm}$

Melting aluminum around stainless steel pipes

- Casting mould with stop off and cooling pipe
- The pipe can move in one direction to minimize internal stress

Casting mould after first melting process

- First test done under vacuum
- good results, but the vacuum furnace gets really dirty