ALICE Detector Control System Management and Organization

Peter Chochula, Mateusz Lechman
for ALICE Controls Coordination Team
The ALICE experiment at CERN
Organization of the controls activities
Design goals and strategy
DCS architecture
DCS operation
Infrastructure management
Summary & Open discussion
CERN & LHC

- European Organization for Nuclear Research
 - Conseil Européen pour la Recherche Nucléaire
- Main function: to provide particle accelerators and other infrastructure needed for high-energy physics research
- 22 member states + wide cooperation: 105 nationalities
- 2500 employes + 12000 associated members of personnel
- Main project: Large Hardron Collider
ALICE – A Large Ion Collider Experiment

Detector:
Size: 16 x 16 x 26 m (some components installed >100m from interaction point)
Mass: 10,000 tons
Sub-detectors: 19
Magnets: 2

Collaboration:
Members: 1500
Institutes: 154
Countries: 37
ALICE – A Large Ion Collider Experiment
ALICE – A Large Ion Collider Experiment
Organization of controls activities
Mandate of ALICE Controls Coordination (ACC) team and definition of Detector Control System (DCS) project approved by Management Board (2001)
- Strong formal foundation for fulfilling duties
Organization structures

- ALICE Control Coordination (ACC) is the functional unit mandated to co-ordinate the execution of the Detector Control System (DCS) project.

- Other parties involved in the DCS project:
 - Sub-detector groups
 - Groups providing the external services (IT, gas, electricity, cooling,...)
 - DAQ, Trigger and Offline systems, LHC Machine

- Controls Coordinator (leader of ACC) reports to Technical Coordinator and Technical Board.

- ALICE Controls Board
 - ALICE Controls Coordinator + one representative per each sub-detector project and service activity
 - The principal steering group for DCS project, reports to Technical Board
Controls activities

- The sub-detector control systems are developed by the contributing institutes
 - Over 100 developers from all around the world and from various backgrounds
 - Many sub-detector teams had limited expertise in controls, especially in large scale experiments

- ACC team (~7 persons) is based at CERN
 - Provides infrastructure
 - Guidelines and tools
 - Consultancy
 - Integration
 - Cooperates with other CERN experiments/groups
Technical competencies in ACC

- Safety aspects (member of ACC is deputy GLIMOS)
- System architecture
- Control system development (SCADA, devices)
- IT administration (Windows, Linux platforms, network, security)
- Database development (administration done by the IT department)
- Hardware interfaces (OPCS, CAN interfaces)
- PLCs
ACC- relations

- ALICE Sub-detectors
- ALICE DAQ, TRG, Offline groups
- Vendors
- ATLAS
- CMS
- LHCb
- CERN (BE/ICS)
- Common vendors
- Electronics Pool
- Vendors
- IT – database service
- IT – cyber security service
- IT – network service
- CERN infrastructure services: gas, cooling, ventilation
Cooperation

Joint Controls Project (JCOP) is a collaboration between CERN and all LHC experiments to exploit communalities in the control systems

- Provides, supports and maintains a common framework of tools and a set of components
- Contributions expected from all the partners
- Organization: two types of regular meetings (around every 2 weeks):
 - Coordination Board
 - defining the strategy for JCOP
 - steering its implementation
 - Technical (working group)
JCOP Coordination Board - mandate

- Defining and reviewing the architecture, the components, the interfaces, the choice of standard industrial products
 - SCADA, field bus, PLC brands, etc

- Setting the priorities for the availability of services and the production as well as the maintenance and upgrade of components
 - in a way which is --as much as possible- compatible with the needs of all the experiments.

- Finding the resources
 - for the implementation of the program of work

- Identifying and resolving issues
 - which jeopardize the completion of the program as-agreed, in-time and with the available resources.

- Promoting the technical discussions and the training
 - to ensure the adhesion of all the protagonists to the agreed strategy
Design goals and strategy
Design goals

- DCS shall ensure safe and efficient operation
 - Intuitive, user friendly, automation
- Many parallel and distributed developments
 - Modular, still coherent and homogeneous
- Changing environment – hardware and operation
 - Expandable, flexible
- Operational outside datataking, safeguard equipment
 - Available, reliable
- Large world-wide user community
 - Efficient and secure remote access
- Data collected by DCS shall be available for offline analysis of physics data
Strategy and methods

- Common tools, components and solutions
 - Strong coordination within experiment (ACC)
 - Close collaboration with other experiments (JCOP)
 - Use of services offered by other CERN units

- Standardization: many similar subsystems in ALICE
 - Identify communalities through:
 - User Requirements Document (URD)
 - Overview Drawings
 - Meetings and workshops
User Requirement Document

- Brief description of sub-detector goal and operation
- Control system
 - Description and requirement of sub-systems
 - Functionality
 - Devices / Equipment (including their location, link to documentation)
 - Parameters used for monitoring/control
 - Interlocks and Safety aspects
 - Operational and Supervisory aspects
 - Requirement on the control system
 - Interlocks and Safety aspects
 - Operational and Supervisory aspects
- Timescale and planning (per subsystem)
 - For each phase:
 - Design, Production and purchasing, Installation, Commissioning, Tests and Test beam
Prototype development

- In order to study and evaluate possible options of ‘standard solutions’ to be used by the sub-detector groups it was necessary to gain "hands-on" experience and to develop prototype solutions.

- Prototype developments were identified after discussions in Controls Board and initiated by the ACC team in collaboration with selected detector groups.
 - Examples:
 - Standard ways of measuring temperatures
 - Control of HV systems
 - Monitoring of LV power supplies

- Prototype of complete end-to-end detector control slices including the necessary functions at each DCS layer.
 - from operator to electronics.
ACC deliverables – design phase

- DCS architecture layout definition
- URD of systems, devices and parameters to be controlled and operated by DCS
- Definition of ‘standard’ ALICE controls components and connection mechanisms
- Prototype implementation of ‘standard solutions’
- Prototype implementation of an end-to-end detector controls slice
- Global project budget estimation
- Planning and milestones
Coordination and evolution challenge

- **Initial stage, development**
 - Establish communication with all the involved parties
 - To overcome cultural differences: Start coordinating early, strict guidelines

- **During operation, maintenance**
 - HEP environment: original developers tend to drift away
 - (apart from a few exceptions) very difficult to ensure continuity for the control systems in the projects
 - In many small detector projects, controls is done only part-time by a single person

- **The DCS has to**
 - follow the evolution of the experiment equipment and software
 - follow the evolution of the use of the system
 - follow the evolution of the users
DCS Architecture
The Detector Control System

- Responsible for safe and reliable operation of the experiment
 - Designed to operate autonomously
 - Wherever possible, based on industrial standards and components
 - Built in collaboration with ALICE institutes and CERN JCOP
 - Operated by a single operator
The DCS context and scale

<table>
<thead>
<tr>
<th>Category</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>19 autonomous detector systems</td>
<td></td>
</tr>
<tr>
<td>1200 network attached devices</td>
<td></td>
</tr>
<tr>
<td>100 WINCC OA systems</td>
<td></td>
</tr>
<tr>
<td>>700 embedded computers</td>
<td></td>
</tr>
<tr>
<td>>100 subsystems</td>
<td></td>
</tr>
<tr>
<td>170 control computers</td>
<td></td>
</tr>
<tr>
<td>270 crates</td>
<td></td>
</tr>
<tr>
<td>200 000 OPC items</td>
<td></td>
</tr>
<tr>
<td>1 000 000 supervised parameters</td>
<td></td>
</tr>
<tr>
<td>100 000 frontend services</td>
<td></td>
</tr>
</tbody>
</table>

Devices with similar functionality are grouped into subsystems. About 100 different subsystems are implemented in ALICE.
The DCS data flow

- ALICE on-detector electronics
- Detector sub-systems
- External sub-systems
- DCS data processing farm
- DCS data storage (ORACLE, file servers)
- Offline (GRID)
- Operator UIs
- Data Consumers

300,000 values/s Read by software
3,000 values/s Injected into PVSS
1,000 values/s Written to ORACLE
>200 values/s Sent to consumers
DCS Architecture

User Interface Layer
- Intuitive human interface

Operations Layer
- Hierarchy and partitioning by FSM

Controls Layer
- Core SCADA based on WINCC OA
- OPC and FED servers

Device abstraction Layer
- DCS devices

Field Layer
- DCS devices
DCS Architecture

The DCS Controls Layer
• Core of the Control Layer runs on WINCC OA SCADA system
• Single WINCC OA system is composed of managers
• Several WINCC OA systems can be connected into one distributed system

100 WINCC OA systems
2700 managers
An autonomous distributed system is created for each detector.
• Central systems connect to all detector systems
• ALICE controls layer is built as a distributed system consisting of autonomous distributed systems
• To avoid inter-system dependencies, connections between detectors are not permitted
• Central systems collect required information and re-distribute them to other systems
 • New parameters added on request
• System cross connections are monitored and anomalies are addressed
Central DCS cluster consists of ~170 servers:
- Managed by central team
- Worker nodes for WINCC OA and Frontend services
- ORACLE database
- Storage
- IT infrastructure

ORACLE size: 5.4 TB
DCS Architecture

Field Layer
The power of standardization
DCS Architecture

- User Interface Layer
 - Intuitive human interface
- Operations Layer
 - Hierarchy and partitioning by FSM
- Controls Layer
 - Core SCADA based on WINCC OA
- Device abstraction Layer
 - OPC and FED servers
- Field Layer
 - DCS devices
Wherever possible, standardized components are used

- Commercial products
- CERN-made devices
- Frontend electronics
 - Unique for each detector
 - Large diversity, multiple buses and communication channels
 - Several technologies used within the same detector
- OPC used as a communication standard wherever possible
- Native client embedded in WINCC OA

OPC Server

Device Driver

Standardized interface

WINCC OA OPC Client

200 000 OPC items in ALICE

WINCC OA

Commands

Status

DCOM

About OPC

News

Events

Downloads

Product Guide

Support

Regions

Resources

Search

My Account

Specifications

Unified Architecture

Alarm and Events

Data Access

Historical Data Access

OPC .NET

Batch

Commands

Common

Complex Data

Data Exchange

Security

XML Data Access

Categories

Application Case Studies

Compliance

Core Components

NET API

Presentations

Plug-ins

Specifications

Unified Architecture

Download Specifications

Category: Specifications

Filter By Title: Filter None

Filter By Status: Filter Current

62 rows found

<table>
<thead>
<tr>
<th>Title</th>
<th>Version</th>
<th>Availability</th>
<th>Last Modified</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDI Usability Style Guide Draft</td>
<td>1.04</td>
<td>Members</td>
<td>2013-09-10</td>
</tr>
<tr>
<td>OPC UA For Analyzer Devices 1.1 Companion Specification</td>
<td>1.1</td>
<td>Members</td>
<td>2013-07-31</td>
</tr>
<tr>
<td>OPC UA For Devices 1.1 Companion Specification</td>
<td>1.1</td>
<td>Members</td>
<td>2013-07-29</td>
</tr>
<tr>
<td>OPC UA Part 7 - Profiles 1.02 Specification</td>
<td>1.02</td>
<td>Members</td>
<td>2013-04-18</td>
</tr>
<tr>
<td>OPC UA for 10A-95 Common Object Model</td>
<td>1.01.00</td>
<td>Members</td>
<td>2013-04-17</td>
</tr>
<tr>
<td>OPC UA Part 2 - Security Model 1.02 Specification</td>
<td>1.02</td>
<td>Members</td>
<td>2013-04-17</td>
</tr>
<tr>
<td>OPC Data Access 3.00 Errata</td>
<td>3.00</td>
<td>Members</td>
<td>2013-03-21</td>
</tr>
<tr>
<td>OPC Historical Data Access 1.20 Errata</td>
<td>1.20</td>
<td>Members</td>
<td>2013-03-21</td>
</tr>
<tr>
<td>OPC XML-UA 1.04 Errata</td>
<td>1.01</td>
<td>Members</td>
<td>2013-02-21</td>
</tr>
<tr>
<td>FDI Specifications, Release Candidate 0.9</td>
<td>0.9</td>
<td>Corporate Members</td>
<td>2012-02-12</td>
</tr>
<tr>
<td>OPC UA 1.02 Specifications Errata</td>
<td>1.00</td>
<td>Members</td>
<td>2012-10-23</td>
</tr>
<tr>
<td>OPC UA Part 1 - Overview and Concepts 1.02 Specification</td>
<td>1.02</td>
<td>Non-Members</td>
<td>2012-08-16</td>
</tr>
<tr>
<td>OPC UA Part 3 - Address Space Model 1.02 Specification</td>
<td>1.02</td>
<td>Members</td>
<td>2012-08-16</td>
</tr>
</tbody>
</table>
• Missing standard for custom devices
 • OPC too heavy to be developed and maintained by institutes
 • Frontend drivers often scattered across hundreds of embedded computers (Arm Linux)
Filling the gap
Generic FED architecture

Generic client implemented as PVSS manager

Communication interface with standardized commands and services

Device/specific layer providing high-level functionality (i.e. Configure, reset...)

Low-level device interface (i.e. JTAG driver and commands)
SPD FED Implementation

FED Server
- DIM Server
- Custom logic
- NI-VISA
- VME-JTAG

Commands → Data → Sync → MXI

Images of SPD FED implementation equipment and diagrams.
TRD FED Implementation

- **FED Server**
 - DIM Server
 - Custom logic (Intercom)
 - FEE Client

- **DIM Server**
 - Commands
 - Data
 - Sync

- **FEE Server**
 - 500 FEE servers
 - 2 FED servers

- **FEE Client**

- **Custom logic**

- **DCS control board (~750 used in ALICE)**
DCS Architecture

Operation Layer
Hierarchical approach

Based on CERN toolkit (SMI++)

Each node modelled as FSM

Integrated with WINCC OA

Central control

Detector

Subsystem

Device
ALICE central FSM hierarchy

1 top DCS node
19 detector nodes
100 subsystems
5000 logical devices
10000 leaves
READY for Physics

Compatible with beam operations

Configuration loaded

Devices powered ON

Everything OFF
Atomic actions sometimes require complex logic:

Some detectors require cooling before they turn on the low voltage
But
Frontend will freeze if cooling is present without low voltage

Unconfigured chips might burn (high current) if powered
But
The chips can be configured only once powered
Originally simple operation become complex in real experiment environment
Cross-system dependencies are introduced.

Am I authorized?
Is Cooling OK?
Is LHC OK
Are magnets OK?
Is run in progress?
Are counting rates OK?
Each detector has specific needs
Operational sequences and dependencies are too complex to be mastered by operators
Operational details are handled by FSM prepared by experts and continuously tuned
Partitioning

Single operator controls ALICE

Failing part is removed from hierarchy

Remote expert operates excluded part

- ALICE is primary interested in ion physics
- During the LHC operation with protons, there is small room for developments and improvements
- Partitioning is used by experts to allow for parallel operation
Certain LHC operations might be potentially dangerous for detectors

Detectors can be protected by modified settings (lower HV...)

But......
Excluded parts do not receive the command!

DANGER!
For potentially dangerous situations a set of procedure independent on FSM is available

Automatic scripts check all critical parameters directly also for excluded parts

Operator can bypass FSM and force protective actions to all components
DCS Architecture

User interface layer
DCS Architecture

User Interface Layer
- Intuitive human interface

Operations Layer
- Hierarchy and partitioning by FSM

Controls Layer
- Core SCADA based on WINCC OA

Device abstraction Layer
- OPC and FED servers

Field Layer
- DCS devices

User Interface Layer

Operations Layer

Controls Layer

Device abstraction Layer

Field Layer
The original simple FSM layout got complex with time.

Potential risk of human errors in operation.

A set of intuitive panels and embedded procedures replaced the direct FSM operation.
DCS Operation
Organization

- Central operator is responsible for all subdetectors
 - 24/7 shift coverage during ALICE operation periods
 - High turnaround of operators – specific to HEP collaborations
 - Shifters training and on-call service provided by the central team
 - Requires clear, extensive documentation understandable for non-expert, and easily accessible

- Sub-detector systems are maintained by experts from the collaborating institutes
 - On-call expert reachable during operation with beams
 - Remote access for interventions
 - In critical periods, detector shifts might be manned by detector shifters
 - Very rare and punctual activity e.g. few hours when heavy ion period starts – the system has grow mature
Emergency handling

- Sub-detectors developers prepare alerts and related instructions for their subsystems
 - These experts very often become on-call experts
 - Automatic or semi-automatic recovery procedures

- 3 classes of alerts:

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatal</td>
<td>high priority - imminent danger, immediate reaction required</td>
</tr>
<tr>
<td>Error</td>
<td>middle priority - severe condition which does not represent imminent danger but shall be treated without delay</td>
</tr>
<tr>
<td>Warning</td>
<td>low priority - early warning about possible problem, does not represent any imminent danger</td>
</tr>
</tbody>
</table>
Alert handling

- Reaction to DCS alerts (classes fatal and error) is one of the main DCS operator tasks

- Warnings:
 - Under responsibility of subsystems shifters/experts
 - No reaction expected from central operator

- Dedicated screen displays alerts (F,E) arriving from all connected DCS systems as well as from remote systems and services
Alert instructions

- Available directly from the alerts screen
Alert handling procedure

Alert triggered

Check Instructions (right click on AES)

If sub-detector crew present - delegate

Follow instructions

Instructions missing – call expert

Instructions not clear or do not help – call expert

Acknowledge

Make logbook entry
Infrastructure Management
The *controls network* is a separate, well protected network
- Without direct access from outside the experimental area
- With remote access only through application gateways
- With all equipment on secure power
Computing Rules for DCS Network

- Document prepared by ACC and approved on the Technical Board level
- Based on
 - CERN Operational Circular Nr. 5 (baseline security document, mandatorily signed by all users having a CERN computing account)
 - Security Policy prepared by CERN Computing and Network Infrastructure (CNIC)
 - Recommendations of CNIC

- Describes services offered by ACC related to computing infrastructure
Scope of Computing Rules

- Categories of network attached devices
- Computing hardware (HW) purchases and installation
 - Standard HW -> by ACC
 - Rules for accepting non-standard HW
- Computer and device naming conventions
- DCS software installations
 - Rules for accepting non-standard components
- Remote access policies for DCS network
 - Access control and user privileges
 - 2 levels: operators and experts
 - Files import and export rules
- Software backup policies
- Reminder that any other attempt to access the DCS network is considered as unauthorized and in direct conflict with CERN rules and subjected to sanctions
Managing Assets

- DCS services require numerous software and hardware assets (Configuration Items)
- Essential to ensure that reliable and accurate information about all these components along with the relationship between them is properly stored and controlled
- CIs are recorded in different configuration databases at CERN
- Configuration Management System - integrated view on all the data
- Repository for software
Hierarchy of Configuration Items

- Based on IT Infrastructure Library (ITIL) recommendations
Managing dependencies

- Generation of diagrams showing dependencies between CIs for impact analysis
Knowledge Management

- Implemented via:
 - MS SharePoint - documents management and collaboration system
 - before TWiki & custom ACC webpages were in use
 - JIRA – issues tracking

- Scope – all deliverables from ACC
 - Technical documentation for experts
 - Operational procedures
 - Training materials
 - DCS Computing Rules
 - Known Errors register
 - Operation reports
 - Publications
 - ...

...
Summary

- Standarization is the key to success

- Experiment environment evolves rapidly
 - Scalability and flexibility play important role in DCS design
 - Stable central team contributing to the conservation of expertise

- Central operation
 - Cope with large number of operators
 - Adequate and flexible operation tools, automation
 - Easily accessible, explicit procedures

- Experiment world is dynamic, volatile
 - Requires a major coordination effort

- ALICE DCS provided excellent and uninterrupted service since 2007
Summary

- Operational experiences gained during the operation are continuously implemented into the system in form of procedures and tools
- Relatively quiet on-call shifts for ACC members
 - Number of calls decreased significantly over time (from ~1 per day at the start to ~1 per week now)
 - More automation
 - Better training and documentation
 - Better procedures
 - Better UIs that make operation more intuitive (hiding complexity)
THANK YOU FOR YOUR ATTENTION