

Towards laserspectroscopy at CRYRING@ESR Polarization of ion beams by optical pumping

K. Mohr¹, A. W. Barasa¹, T.Ratajczyk¹, W. Nörtershäuser¹, R. Sanchez,², Z. Andelkovic², V. Hannen³, A. Buß³ and C. Weinheimer³

¹Departement of Nuclear Physics, TU Darmstadt, ²GSI Helmholtzzentrum, ²Departement of Nuclear Physics, WWU Münster

Motivation

Polarized ion beams of heavy elements in storage rings are of great interest for example on parity non-conservation experiments on He-like ions [1, 2]. Even polarized beams of protons, antiprotons and muons have been established, this is pending for heavy ions. issue is polarizing the beam in a reasonable time. Using circularly polarized σ^+ -light one can populate the atomic substate with the highest magnetic quantum number (or the lowest by using σ^- -light).

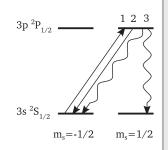
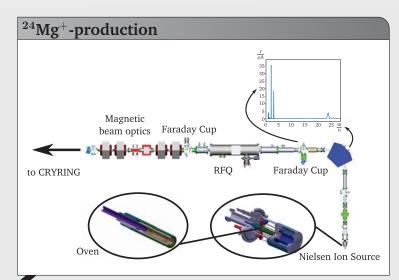



Figure 1: Polarization scheme of 24 Mg+.

To proof the principle, we want do investigate whether a induced polarization of the electron shell will be maintained after the revolution in a storage ring.

CRYRING@ESR

- Magnetic rigidity 1,44 Tm leads to ion energies of about 4 MeV in case of ²⁴Mg⁺.
- Circumference of 54 m fitting to the second harmonic of ESR. The highest achievable energy of ²⁴Mg⁺ leads to a frequency of 107 kHz.

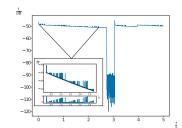
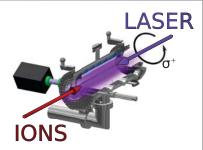



Figure 2: Lifetime-Measurement of $^{24}Mg^{+}$

- Acceleration and bunching has been tested successfully during the last beamtime in March for ⁴⁰Ar⁺ as well as ²⁴Mg⁺.
- Lifetime of Mg was determined to be 9,53 s at $1,67 \frac{\text{keV}}{\text{n}}$ (s. fig. 2).
- Electron-cooler leads to thermal energies of $k_B\,T_\perp\,<\,1,5\,\,\mathrm{meV}$ for transversal motion and $k_B T_{\parallel} = 0,05 \ \mathrm{meV}$ respectively [3].

Detection region and DAQ

- · The elliptical mirror system consisting of MIRO3foil leads to a high reflectivity in the UV-range and thus for the D1 transition of 24 Mg $^+$.
- · Saphire windows to provide high transmission to PMT's sitting on the win-

- Time resolution down to $10~\mathrm{ns}$ with a FPGA based PXI-system will be possible [4].
- · Data acquisition will be adapted to ion-bunches to provide a high Signal-to-noise ratio.
- · Maintaining flourescence signal will indicate a successfull polarization of the ion beam.

Outlook

- Analysis of the measured Mgbeam emittance (s. fig. 3).
- · Adaption of TILDA to preregisits of CRYRING@ESR.
- Measurement of laser scattered light.
- First fluorescence measurement.

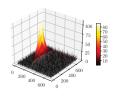


Figure 3: Intensity of ²⁴Mg⁺ at injection beam line diagnostic.

References

[1] F. Ferro, A. Surzhykov, and T. Stöhlker, Physical Review A - Atomic, Molecular, and Optical Physics 83, 1 (2011).

[2] A. Bondarevskaya et al., Physics Reports 507, 1 (2011).

[4] C. Gorges et al., Hyperfine Interactions 238, 1 (2017).