

Performance and Design of the Transition Radiation Detector for the CBM Experiment

Christoph Blume¹, Philipp Kähler², for the CBM Collaboration

¹ Goethe-University Frankfurt, Germany, ² WWU Münster, Germany

Physics Performance

Dielectron Measurements

- Intermediate-mass dielectrons (s. figure) \bullet
- Quarkonia in pA (and AA)
- Photons via γ-conversion \bullet
- Requires pion suppression at high $p_t \Rightarrow$ TRD contribution

p (GeV/c)

Hadron Identification

- Separation of light nuclei (e.g. d \leftrightarrow ⁴He)
- Important for hypernuclei program (e.g. ${}^{5}_{\Lambda}$ He \rightarrow 4 He + p + π^{-})
- Different charge states cannot be identified with TOF alone
- Additional hadron ID via *dE/dx*-measurement in the TRD

 $m_{inv} (GeV/c^2)$

m_{inv}(GeV/c²)

Detector Design

Requirements

- 4-layer detector setup \bullet
- Modular structure
- Pion rejection factor ≈ 20
- Charged particle identification
- Tracking capabilities (STS \rightarrow TOF)

Design Parameters	Value
Pseudo-rapidity coverage	1.15 < η < 3.65
Max. height × width	5.15 m × 6.25 m
Gas volume	1.36 m ³
Active detector area	113.4 m ²
Material budget	< 5 % per layer
Number of modules	216
Number of readout channels	329728
Max. signal collection time	300 ns

- High interaction rates (up to 10 MHz)
- Muon tracking in MUCH setup

Max. hit rate / channel (MB Au+Au at 10 AGeV)	≤ 100 kHz
Max. occupancy (cent. Au+Au at 10 AGeV)	< 10 %
Space point resolution	~ 300 µm
π-Suppression (90% e-efficiency, $p \ge 1.5$ GeV/c)	20
<i>dE/dx</i> -Resolution (<i>p</i> > 1 GeV/ <i>c</i>)	≤ 30 %

Working principle

- Radiator: boxes with stacks of PE foam foil
- Readout: Multi-Wire Proportional Chamber (MWPC) with segmented pad plane

 \Rightarrow fast signal collection

- Counting gas: Xe/CO_2 (85/15) \Rightarrow high γ absorption cross section
- Thin MWPC (12 mm)
- Drift region
- \Rightarrow high TR-photon absorption and stable gas gain

Module layout

- 4 different module types: 2 small (57×57 cm²) and 2 large (99×99 cm²) ones \bullet
- Thickness of gas volume: 5 mm (drift) / 3.5+3.5 mm (amplification) \bullet
- Carbon fiber support frame \Rightarrow stability of entrance window foil
- Front-end electronics mounted on back panel

Readout

Test Measurements

- SPADIC ASICs
- Self-triggered readout
- Forced neighbor readout
- 32 channels \bullet
- 9-bit ADC \bullet
- Digital shaper \bullet

Self-triggered Pulse Amplification and Digitization ASIC

