Summary of the Photon Detection Efficiency Working Group

- Fabio Acerbi (FBK)
- Giovanni Bonanno (INAF)
- Yuri Musienko (CERN / Notre Dame)
- Nepomuk Otte (Georgia Tech)
- Giuseppe Romeo (INAF)
- Sean Stoll (BNL)
- Frédéric Vachon (Sherbrooke)
- Nan Zhang (Siemens Healthineers)

Nepomuk Otte

School of Physics
Center for Relativistic Astrophysics

Georgia
Tech

Physics College of Sciences

PDE Measurements: Practical Considerations

Recommended procedure should be:

- Robust, reliable
- Work at room and cryogenic temperatures
- Good control of systematics
- Easy to set up

Two Conceptually Different Methods

Continuous Photon Beam vs. Pulsed Photon Beam

Continuous Photon Beam methods are prone to be affected by correlated noise of SiPMs
\rightarrow More than one photoelectron per detected photon
\rightarrow Tricky to correct for

WG recommends "pulsed" method as standard PDE measurement method

Measurements only at distinct wavelengths
\rightarrow need to fit spectral response measurement to PDE measurements

Effect of Non-Poissonian pulsed Light Sources

Necessary Condition: Light source needs to be "Poissonian"
Average number of detected photons measured by counting how often no signal is detected

$$
\bar{N}_{\mathrm{Ph}}=\ln \left(\frac{N_{0}^{\mathrm{DC}}}{N_{0}}\right)
$$

Assumes Poisson statistics

Not always the case: For example mode mixing in lasers, some LEDs
\rightarrow photons can be correlated

Need a list of "approved" light sources (LEDs and lasers)

Swapping Sensors vs. Optical Splitter

Pro:

- Measure reference and DUT simultaneously

Contra:

- Possible wavelength dependent splitting ratio
- Photons can trickle out over long time from integrating sphere

Pulse Generator

Personal Computer
Y. Musienko

Pro:

- no beam splitter

Contra:

- reference and DUT need to be measured in sequence \rightarrow need a monitoring device

Solution: Combine the two methods

Proposed Standard Setup

- Use calibrated SiPM as reference (i.e. no PiN diode) \rightarrow splitting ratio of ~ 1 - Standard "PDE Box"

s. E. Engelmann

