Hans Feldmeier and some personal recollections on the occasion of his 70th birthday

- 1948 May 31, born in Rothenkirchen, Germany
- 1966 Begin of study in mathematics and physics at TH Darmstadt
- 1971 Diploma in physics
 Thesis: "Influence of non-central forces on the spectrum of ²⁴Mg"
- 1974 Dr. rer. nat. Thesis: "Effective interactions for nuclei at the beginning of the sd-shell"

Effektive Wechselwirkungen für Kerne der sd-Schale

M. Conze, H. Feldmeier, P. Manakos, T. Wolff (Inst. f. Kernphysik Technische Hochschule Darmstadt)

Bei Schalenmodellrechnungen im (sd)ⁿ -Konfigurationsraum erhält man für Kerne am Anfang der sd-Schale mit den von T. T. S. Kuo und G. E. Brown hergeleiteten effektiven Wechselwirkungen im wesentlichen eine gute Reproduktion der experimentellen Daten. Bei Kernen, die ein niedrigliegendes zweites Rotationsband aufweisen, (ab Massenzahl A=21) zeigt sich jedoch ein signifikantes Abweichen der berechneten von den experimentellen Spektren. Das angeregte Rotationsband liegt in allen Fällen zu tief, während die Niveauabstände innerhalb der Bänder richtig beschrieben werden. Es zeigt sich, daß durch Variation eines speziellen nichtzentralen Anteils, des ALS-Teils, der effektiven Wechselwirkung dieser Mangel behoben werden kann. Unter Berücksichtigung dieses ALS-Teils läßt sich durch Anpassung an experimentelle Daten eine effektive Wechselwirkung finden, die nicht nur die Lage der Rotationsbänder richtig beschreibt, sondern auch die Energiespektren und übrigen Observablen für Kerne in der ersten Hälfte der sd-Schale insgesamt wesentlich besser reproduziert.

Spring Meeting - NP Division of the DPG Bochum 1974

1948	May 31, born in Rothenkirchen, Germany
1966	Begin of study in mathematics and physics at TH Darmstadt
1971	Diploma in physics:
	Thesis: "Influence of non-central forces on the spectrum of ²⁴ Mg"
1974	Dr. rer. nat.
	Thesis: "Effective interactions for nuclei at the beginning of the sd-shell"
1975	Postdoc at Oak Ridge National Laboratory, U.S.A.
1976	Research Associate at Institut für Kernphysik, TH Darmstadt
1978–2017	Co-organizer of the International Hirschegg Workshops on "Gross Properties of Nuclei and Nuclear Excitations"
1981	Habilitation
	Thesis: "Interacting fermion systems of small particle numbers"
1981–1986	Heisenberg fellow at MPI Heidelberg/TU and GSI Darmstadt
1986–2013	Staff scientist at GSI
1990	Professorship at TH (now TU) Darmstadt
2009–2013	Head of the Theory Group "Nuclear Structure and Nuclear Astrophysics" at GSI

Hans Feldmeier's Fields of Research

- Theoretical Nuclear Physics
 - Nuclear structure
 - Short range correlations in nuclei
 - Nuclear reactions
- Nuclear Astrophysics
- Dissipative Phenomena in Quantum Mechanics
- Cold Fermions in Traps

Research activities

• SU(3) Shell model and effective interactions

Reprinted from ANNALS OF PHYSICS All Rights Reserved by Academic Press, New York and London

Vol. 115, No. 2, October 1978 Printed in Belgium

Allowed β-Transitions, Weak Magnetism and Nuclear Structure in Light Nuclei*

H. BEHRENS

Zentralstelle für Atomkernenergie-Dokumentation, Kernforschungszentrum Karlsruhe, 7514 Eggenstein-Leopoldshafen, Germany

AND

H. GENZ, M. CONZE, H. FELDMEIER, W. STOCK, AND A. RICHTER

Institut für Kernphysik der Technischen Hochschule Darmstadt, 6100 Darmstadt, Germany

Nuclear Physics A295 (1978) 319-332; C North-Holland Publishing Co., Amsterdam Not to be reproduced by photoprint or microfilm without written permission from the publisher

STUDY OF ELECTRIC MONOPOLE TRANSITIONS BETWEEN THE GROUND STATE AND THE FIRST EXCITED 0⁺ STATE IN ^{40, 42, 44, 48}Ca WITH HIGH RESOLUTION INELASTIC ELECTRON SCATTERING[†]

H. D. GRÄF, H. FELDMEIER, P. MANAKOS, A. RICHTER and E. SPAMER Institut für Kernphysik, Technische Hochschule Darmstadt, 6100 Darmstadt, Germany

and

D. STROTTMAN ^{††}

Physics Department, State University of New York, Stony Brook, New York 11794

Research activities

- SU(3) Shell model and effective interactions
- TDHF \rightarrow Dissipation in small isolated Fermi systems \rightarrow Dissipative HI collisions

PHYSICAL REVIEW C

VOLUME 15, NUMBER 4

Time-dependent Hartree-Fock calculations for ${}^{16}O + {}^{16}O$ and ${}^{40}Ca + {}^{40}Ca$ reactions*

S. E. Koonin[†]

Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125

K. T. R. Davies, V. Maruhn-Rezwani, H. Feldmeier,[‡] and S. J. Krieger[§] Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830

J. W. Negele[¶]

Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02135 (Received 20 September 1976)

2.B:2.N

Nuclear Physics A332 (1979) 455-476; C North-Holland Publishing Co., Amsterdam Not to be reproduced by photoprint or microfilm without written permission from the publisher

STRONGLY DAMPED COLLISIONS IN THE ⁴⁰Ar + ⁴⁰Ca SYSTEM

P. WASTYN, H. FELDMEIER, F. BECK, M. DWORZECKA[†], H. GENZ, M. MUTTERER, A. RICHTER, G. SCHRIEDER and J. P. THEOBALD

Institut für Kernphysik, Technische Hochschule Darmstadt, 6100 Darmstadt, Germany **

Z. Phys. A - Atoms and Nuclei 302, 365-366 (1981)

Short Note

Comment on Fusion Cross Sections in the ⁴⁰Ar + ⁴⁰Ca and ⁴⁰Ca + ⁴⁰Ca Systems*

J. Carter, H. Feldmeier, A. Richter, G. Schrieder, and P. Wastyn Institut für Kernphysik, Technische Hochschule Darmstadt, D-6100 Darmstadt, Federal Pepublic of Germany Z. Phys. A - Atoms and Nuclei 313, 57-67 (1983)

On the Fusion Dynamics of ⁴⁰Ar + ⁴⁰Ca – Fusion-Fission and Fusion-Evaporation*

J. Carter, C. Brendel, A. Richter, and G. Schrieder Institut für Kernphysik, Technische Hochschule, Darmstadt, Federal Republic of Germany

H. Feldmeier**Max-Planck-Institut f
ür Kernphysik, Heidelberg, Federal Republic of GermanyW. Bohne, K. Grabisch, H. Lehr, and H. Morgenstern

Hahn-Meitner-Institut für Kernforschung, Berlin, Germany

Research activities

- SU(3) Shell model and effective interactions
- TDHF \rightarrow Dissipation in small isolated Fermi systems \rightarrow Dissipative HI collisions
- Short range repulsion between nucleons, Unitary Correlation Operator Method (UCOM), applications to nuclear structure and reactions, dynamics is treated by the method of Fermionic Molecular Dynamics (FMD)

Nuclear Physics A 632 (1998) 61-95

NUCLEAR

PHYSICS A

A unitary correlation operator method

H. Feldmeier¹, T. Neff², R. Roth³, J. Schnack⁴

Gesellschaft für Schwerionenforschung mbH, Postfach 110 552, D-64220 Darmstadt, Germany Technische Universität Darmstadt, Darmstadt, Germany

Received 22 September 1997; accepted 12 December 1997

Molecular dynamics for fermions

Hans Feldmeier

Gesellschaft für Schwerionenforschung mbH, D-64220 Darmstadt, Germany

Jürgen Schnack

Universität Osnabrück, Fachbereich Physik, D-49069 Osnabrück, Germany

The time-dependent variational principle for many-body trial states is used to discuss the relation between the approaches of different molecular-dynamics models that describe indistinguishable fermions. Early attempts to include effects of the Pauli principle by means of nonlocal potentials, as well as more recent models that work with antisymmetrized many-body states, are reviewed under these premises.

Reviews of Modern Physics, Vol. 72, No. 3, July 2000 0034-6861/2000/72(3)/655(34)/\$21.80 ©2000 The American Physical Society 655

Research activities

- SU(3) Shell model and effective interactions
- TDHF \rightarrow Dissipation in small isolated Fermi systems \rightarrow Dissipative HI collisions
- Short range repulsion between nucleons, Unitary Correlation Operator Method (UCOM), applications to nuclear structure and reactions, dynamics is treated by the method of Fermionic Molecular Dynamics (FMD)
- Nuclear astrophysics

PRL 98, 032501 (2007)

PHYSICAL REVIEW LETTERS

week ending 19 JANUARY 2007

Structure of the Hoyle State in ¹²C

M. Chernykh,¹ H. Feldmeier,² T. Neff,³ P. von Neumann-Cosel,¹ and A. Richter¹

¹Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany ²Gesellschaft für Schwerionenforschung, D-64291 Darmstadt, Germany ³National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA PRL 105, 022501 (2010)

PHYSICAL REVIEW LETTERS

Pair Decay Width of the Hoyle State and its Role for Stellar Carbon Production

 M. Chernykh,¹ H. Feldmeier,^{2,3} T. Neff,² P. von Neumann-Cosel,^{1,*} and A. Richter^{1,4}
 ¹Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
 ²Gesellschaft für Schwerionenforschung (GSI), D-64291 Darmstadt, Germany
 ³Yukawa Institute for Theoretical Physics, Kyoto, Japan
 ⁴ECT*, Villa Tambosi, I-38100 Villazzano (Trento), Italy (Received 22 April 2010; published 9 July 2010)

Contents lists available at ScienceDirect

Progress in Particle and Nuclear Physics

journal homepage: www.elsevier.com/locate/ppnp

Towards microscopic ab initio calculations of astrophysical S-factors

Thomas Neff, Hans Feldmeier*, Karlheinz Langanke

GSI Helmholtzzentrum für Schwerionenforschung GmbH Planckstraße 1, 64291 Darmstadt, Germany

ARTICLE INFO

Keywords: Radiative capture reactions ab initio approaches Unitary Correlation Operator Method Fermionic Molecular Dynamics

Hearthy congratulations and all the best for you and your growing family in the years to come!