The Little Bang Standard Model

Physikalisches Kolloquium, GSI, 12. Juni 2018

GSI, 6/12/18

Ulrich Heinz (OSU, CERN & EMMI)

The Little Bang Standard Model

The Big Bang

The Little Bang

Big Bang vs. Little Bang

Similarities: Hubble-like expansion, expansion-driven dynamical freeze-out chemical freeze-out (nucleo-/hadrosynthesis) before thermal freeze-out (CMB, hadron p_T -spectra) initial-state quantum fluctuations imprinted on final state

Differences: Expansion rates differ by 18 orders of magnitude Expansion in 3d, not 4d; driven by pressure gradients, not gravity Time scales measured in fm/*c* rather than billions of years Distances measured in fm rather than light years "Heavy-lon Standard Model" still under construction

Animation: P. Sorensen

Collision of two Lorentz contracted gold nuclei

Ulrich Heinz (OSU, CERN & EMMI)

The Little Bang Standard Model

GSI, 6/12/18 5 / 45

Animation: P. Sorensen

Collision of two Lorentz contracted gold nuclei

Ulrich Heinz (OSU, CERN & EMMI)

The Little Bang Standard Model

GSI, 6/12/18 6 / 45

Animation: P. Sorensen

Collision of two Lorentz contracted gold nuclei

Ulrich Heinz (OSU, CERN & EMMI)

The Little Bang Standard Model

GSI, 6/12/18 7 / 45

Animation: P. Sorensen

Collision of two Lorentz contracted gold nuclei

Ulrich Heinz (OSU, CERN & EMMI)

The Little Bang Standard Model

GSI, 6/12/18 8 / 45

Animation: P. Sorensen

Collision of two Lorentz contracted gold nuclei

Ulrich Heinz (OSU, CERN & EMMI)

The Little Bang Standard Model

GSI, 6/12/18 9 / 45

Animation: P. Sorensen

Collision of two Lorentz contracted gold nuclei

Ulrich Heinz (OSU, CERN & EMMI)

The Little Bang Standard Model

GSI, 6/12/18 10 / 45

Animation: P. Sorensen

Produced fireball is $\sim 10^{-14}$ meters across and lives for $\sim 5 \times 10^{-23}$ seconds

Collision of two Lorentz contracted gold nuclei

Ulrich Heinz (OSU, CERN & EMMI)

The Little Bang Standard Model

Animation: P. Sorensen

Produced fireball is $\sim 10^{-14}$ meters across and lives for $\sim 5 \times 10^{-23}$ seconds

Collision of two Lorentz contracted gold nuclei

Ulrich Heinz (OSU, CERN & EMMI)

The Little Bang Standard Model

GSI, 6/12/18 12 / 45

The Big Bang vs. the Little Bangs

credit: Paul Sorensen

Ulrich Heinz (OSU, CERN & EMMI)

The Little Bang Standard Model

GSI, 6/12/18 13 / 45

Big vs. Little Bang: The fluctuation power spectrum

Mishra, Mohapatra, Saumia, Srivastava, PRC77 (2008) 064902 and C81 (2010) 034903 $\,$

Mocsy & Sorensen, NPA855 (2011) 241, PLB705 (2011) 71

Higher flow harmonics get suppressed by shear viscosity

A detailed study of fluctuations is a powerful discriminator between models!

Ulrich Heinz (OSU, CERN & EMMI)

The Little Bang Standard Model

GSI, 6/12/18 14 / 45

Every Little Bang evolves differently!

Density evolution of a single $b=8\,{\rm fm}$ Au+Au collision at RHIC, with IP-Glasma initial conditions, Glasma evolution to $\tau=0.2\,{\rm fm}/c$ followed by (3+1)-d viscous hydrodynamic evolution with MUSIC using $\eta/s=0.12=1.5/(4\pi)$

Schenke, Tribedy, Venugopalan, PRL 108 (2012) 252301:

The Little Bang Standard Model

GSI, 6/12/18 15 / 45

A (10) < A (10) </p>

Event-by-event shape and flow fluctuations rule!

(Alver and Roland, PRC81 (2010) 054905)

- Each event has a different initial shape and density distribution, characterized by different set of harmonic eccentricity coefficients ε_n
- \bullet Each event develops its individual hydrodynamic flow, characterized by a set of harmonic flow coefficients v_n and flow angles ψ_n
- At small impact parameters fluctuations ("hot spots") dominate over geometric overlap effects (Alver & Roland, PRC81 (2010) 054905; Qin, Petersen, Bass, Müller, PRC82 (2010) 064903)

Definition of flow coefficients:

$$\frac{dN^{(i)}}{dy \, p_T dp_T \, d\phi_p}(b) = \frac{dN^{(i)}}{dy \, p_T dp_T}(b) \left(1 + 2\sum_{n=1}^{\infty} \boldsymbol{v_n^{(i)}}(\boldsymbol{y}, \boldsymbol{p_T}; \boldsymbol{b}) \cos(\phi_p - \boldsymbol{\Psi}_n^{(i)}) \right).$$

Ulrich Heinz (OSU, CERN & EMMI)

The Little Bang Standard Model

Panta rhei: "soft ridge"="Mach cone"=flow!

• anisotropic flow coefficients v_n and flow angles ψ_n correlated over large rapidity range! M. Luzum, PLB 696 (2011) 499: All long-range rapidity correlations seen at RHIC are consistent with being entirely generated by hydrodynamic flow.

- in the 1% most central collisions $v_3 > v_2$
 - ⇒ prominent "Mach cone"-like structure!
 - ⇒ event-by-event eccentricity fluctuations dominate!

Ulrich Heinz (OSU, CERN & EMMI)

The Little Bang Standard Model

(日) (同) (三) (三)

GSI, 6/12/18

17 / 45

Event-by-event shape and flow fluctuations rule!

• in the 1% most central collisions $v_3 > v_2 \Longrightarrow$ prominent "Mach cone"-like structure!

- triangular flow angle uncorrelated with reaction plane and elliptic flow angles
 - \Longrightarrow due to event-by-event eccentricity fluctuations which dominate the anisotropic flows in the most central collisions

Ulrich Heinz (OSU, CERN & EMMI)

The Little Bang Standard Model

GSI, 6/12/18 18 / 45

(日) (同) (日) (日)

https://u.osu.edu/vishnu: A product of the JET Collaboration

Ulrich Heinz (OSU, CERN & EMMI)

The Little Bang Standard Model

GSI, 6/12/18 19 / 45

Viscous relativistic hydrodynamics (Israel & Stewart 1979)

Include shear viscosity η , neglect bulk viscosity (massless partons) and heat conduction ($\mu_B \approx 0$); solve

$$\partial_{\mu}\,T^{\mu\nu}=0$$

with modified energy momentum tensor

$$T^{\mu\nu}(x) = (e(x) + p(x))u^{\mu}(x)u^{\nu}(x) - g^{\mu\nu}p(x) + \pi^{\mu\nu}.$$

 $\pi^{\mu\nu} = \text{traceless viscous pressure tensor}$ which relaxes locally to 2η times the shear tensor $\nabla^{\langle\mu}u^{\nu\rangle}$ on a microscopic kinetic time scale τ_{π} :

$$D\pi^{\mu\nu} = -\frac{1}{\tau_{\pi}} \left(\pi^{\mu\nu} - 2\eta \nabla^{\langle \mu} u^{\nu \rangle} \right) + \dots$$

where $D \equiv u^{\mu}\partial_{\mu}$ is the time derivative in the local rest frame.

Kinetic theory relates η and τ_{π} , but for a strongly coupled QGP neither η nor this relation are known \implies treat η and τ_{π} as independent phenomenological parameters. For consistency: $\tau_{\pi}\theta \ll 1$ ($\theta = \partial^{\mu}u_{\mu} = \text{local expansion rate}$).

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Numerical precision: "Gubser-Test"

Gubser (PRD82 (2010) 085027) found analytical solution for relativistic Navier-Stokes equation with conformal EOS, boost-invariant longitudinal and non-zero transverse flow, corresponding to a specific transverse temperature profile.

Marrochio, Noronha *et al.* (arXiv:1307.6130) found semianalytical generalization of this solution for Israel-Stewart theory. This solution provides a stringent test for numerical Israel-Stewart codes (very rapid and non-trivial transverse expansion!)

VISH2+1 (C. Shen, 2013)

GSI, 6/12/18 21 / 45

https://u.osu.edu/vishnu: A product of the JET Collaboration

Ulrich Heinz (OSU, CERN & EMMI)

The Little Bang Standard Model

GSI, 6/12/18 22 / 45

Converting initial shape fluctuations into final flow anisotropies the QGP shear viscosity $(\eta/s)_{
m QGP}$

Ulrich Heinz (OSU, CERN & EMMI)

The Little Bang Standard Model

GSI, 6/12/18 23 / 45

The University of Queensland pitch drop experiment

SI unit for shear viscosity:

 $[\eta] = \text{Poise} = \text{kg}/(\text{m} \cdot \text{s})$

 $\eta_{\text{water}} = \mathcal{O}(10^{-2} \text{Poise})$

 $\eta_{\rm pitch} \approx 2.3 \times 10^{11} \, \eta_{\rm water} = \mathcal{O}(10^9 \, {\rm Poise})$

(\sim one drop per decade – last drop fell in April 2014 – 2 years late!)

 $\eta_{\rm QGP} \approx 10^3 \, \eta_{\rm pitch} = \mathcal{O}(10^{12} \, \rm Poise)$

Ulrich Heinz (OSU, CERN & EMMI)

GSI, 6/12/18 24 / 45

A measure of fluidity

(a.k.a. Knudsen number)

$$rac{\eta}{e\!+\!p} imes \partial \!\cdot\! u = rac{\Gamma_{ ext{exp}}}{\Gamma_{ ext{sound}}} \!\sim \!rac{\eta}{s} rac{1}{T au}$$

The **specific viscosity** η/s (s=entropy density) is conceptually related to the "kinematic viscosity" η/n in non-relativistic fluid dynamics

Ulrich Heinz (OSU, CERN & EMMI)

A D A D A D A

QGP – the most perfectly fluid liquid ever observed!

AdS/CFT universal lower viscosity bound conjecture:

Kovtun, Son, Starinets, PRL 94 (2005) 111601

Ulrich Heinz (OSU, CERN & EMMI)

The Little Bang Standard Model

GSI, 6/12/18 26 / 45

How to use elliptic flow for measuring $(\eta/s)_{ m QGP}$

The observable that is most directly related to the total hydrodynamic momentum anisotropy ε_p is the total (*p*_T-integrated) charged hadron elliptic flow v_2^{ch} :

$$\varepsilon_p = \frac{\langle T^{xx} - T^{yy} \rangle}{\langle T^{xx} + T^{yy} \rangle} \Longleftrightarrow \frac{\sum_i \int p_T dp_T \int d\phi_p \, p_T^2 \, \cos(2\phi_p) \frac{dN_i}{dyp_T dp_T d\phi_p}}{\sum_i \int p_T dp_T \int d\phi_p \, p_T^2 \frac{dN_i}{dyp_T dp_T d\phi_p}} \iff v_2^{\rm ch}$$

Ulrich Heinz (OSU, CERN & EMMI)

The Little Bang Standard Model

GSI, 6/12/18 27 / 45

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Extraction of $(\eta/s)_{ m QGP}$ from AuAu@RHIC

 $1 < 4\pi (\eta/s)_{
m QGP} < 2.5$

- All shown theoretical curves correspond to parameter sets that correctly describe centrality dependence of charged hadron production as well as p_T-spectra of charged hadrons, pions and protons at all centralities
- v_2^{ch}/ε_x vs. $(1/S)(dN_{ch}/dy)$ is "universal", i.e. depends only on η/s but (in good approximation) not on initial-state model (Glauber vs. KLN, optical vs. MC, RP vs. PP average, etc.)
- dominant source of uncertainty: $\varepsilon_x^{\rm Gl}$ vs. $\varepsilon_x^{\rm KLN}$
- smaller effects: early flow \to increases $\frac{v_2}{\varepsilon}$ by $\sim {\rm few}\,\% \to {\rm larger}\; \eta/s$

bulk viscosity
$$\rightarrow$$
 affects $v_2^{\rm ch}(p_T),$ but \approx not $v_2^{\rm ch}$

Zhi Qiu, UH, PRC84 (2011) 024911 0.8 07 0.6 3 0.5 £.0 € 0.2 0.1 0 10 15 b (fm) (A) (□) (A) (□) (A) →

Ulrich Heinz (OSU, CERN & EMMI)

The Little Bang Standard Model

GSI, 6/12/18 28 / 45

Hydrodynamics - a theory with predictive power

After tuning initial conditions and viscosity at RHIC to obtain a good description of all soft hadron data simultaneously (Song et al. 2010) the first LHC spectra and elliptic flow measurements were successfully **pre**dicted:

Towards a Standard Model of the Little Bang

With inclusion of sub-nucleonic quantum fluctuations and pre-equilibrium dynamics of gluon fields:

 \rightarrow outstanding agreement between data and model

Rapid convergence on a standard model of the Little Bang!

Perfect liquidity reveals in the final state initial-state gluon field correlations of size $1/Q_s$ (sub-hadronic)!

Effect of "afterburning" on p_T -spectra::

IP-Glasma + MUSIC + UrQMD, S. Ryu et al., PRC97 (2018) 034910

"Afterburning" builds additional radial flow, with little effect on abundance ratios

Ulrich Heinz (OSU, CERN & EMMI)

The Little Bang Standard Model

GSI, 6/12/18 31 / 45

Ridge in pp, pPb and PbPb

Flow in Pb+Pb, p+Pb and even p+p at the LHC!

Requires fluctuating proton substructure (gluon clouds clustered around valence quarks (K. Welsh et al. PRC94 (2016) 024919))

Ulrich Heinz (OSU, CERN & EMMI)

The Little Bang Standard Model

GSI, 6/12/18 33 / 45

- ∢ ∃ ▶

This is a collective effect!

Whatever its origin, the "flow signal" represents a collective response (to what?) of all particles!

Ulrich Heinz (OSU, CERN & EMMI)

The Little Bang Standard Model

GSI, 6/12/18 34 / 45

"Small" systems are so only initially:

Three collision systems with the same multiplicity $dN_{\rm ch}/d\eta = 100$

(iEBE-VISHNU, Scott Moreland)

Collision systems with similar $dN_{
m ch}/d\eta$ have similar freeze-out volumes!

 \implies Stronger radial flow in initially smaller systems!

Ulrich Heinz (OSU, CERN & EMMI)

The Little Bang Standard Model

GSI, 6/12/18 35 / 45

Strong radial flow in pp collisions at the LHC

Werner, Guiot, Karpenko, Pierog (EPOS3), PRC 89 (2014) 064903; Data: CMS Collaboration (8, 84, 160, 235 charged tracks)

Elliptic flow (double ridge) discovered in high-multiplicity pp by CMS at 7 TeV (and confirmed by ATLAS at 13 TeV) also reproduced by EPOS.

"One fluid that rules them all" 🕖 (Weller & Romatschke 2017)

Schenke, Quark Matter 2018 (Schenke, Shen, Tribedy, in preparation)

Except for pp, hydro describes all collision systems at all "centralities"

Ulrich Heinz (OSU, CERN & EMMI)

The Little Bang Standard Model

GSI, 6/12/18 37 / 45

Towards quantitative quark-gluon plasma spectroscopy

- Relativistic viscous hydrodynamics (+ pre-hydrodynamic early stage and hadronic rescattering "afterburner") has become the workhorse of dynamical modeling of ultra-relativistic heavy-ion collisions
- It has been successfully used in a Bayesian analysis of LHC Pb+Pb collision data for putting meaningful constraints on the initial conditions and medium properties of QGP created in heavy-ion collisions:

イロト イポト イヨト イヨト

Calibrated Posterior Distribution

Ulrich Heinz (OSU, CERN & EMMI)

The Little Bang Standard Model

GSI, 6/12/18 39 / 45

Ulrich Heinz (OSU, CERN & EMMI)

The Little Bang Standard Model

GSI, 6/12/18 40 / 45

 Flow-like signatures are also obtained from kinetic theory in the limit of *large Knudsen numbers* ("single scattering limit") Heiselberg & Levy '99, Kolb et al. '01, Alver et al. '10, Borghini & Gombeaud '11, Romatschke '18, Kurkela & Wiedemann '18, Borghini et al. '18, ...

- 4 回 ト 4 回 ト 4 回 ト

- Flow-like signatures are also obtained from kinetic theory in the limit of *large Knudsen numbers* ("single scattering limit")
 Heiselberg & Levy '99, Kolb et al. '01, Alver et al. '10, Borghini & Gombeaud '11, Romatschke '18, Kurkela & Wiedemann '18, Borghini et al. '18, ...
- This may actually explain the anisotropic flow measured at high p_T: (Romatschke '18)

Ulrich Heinz (OSU, CERN & EMMI)

The Little Bang Standard Model

GSI, 6/12/18 41 / 45

- Flow-like signatures are also obtained from kinetic theory in the limit of *large Knudsen numbers* ("single scattering limit")
- Variation of this theme: the "escape mechanism" (studied extensively in AMPT: He et al. '15, Lin et al. '15, Orjuela-Koop et al. '15, Li et al. '16, '17, ...)

- Flow-like signatures are also obtained from kinetic theory in the limit of *large Knudsen numbers* ("single scattering limit")
- Variation of this theme: the "escape mechanism" (studied extensively in AMPT: He et al. '15, Lin et al. '15, Orjuela-Koop et al. '15, Li et al. '16, '17, ...)
- Initial-state momentum correlations (Dusling & Venugopalan '13, Lappi et
 - al. '15, Kovchegov & Skokov '18, Schlichting et al. '16, Greif et al. '17, '18, ...)

The Little Bang Standard Model

Much additional work needed to *quantitatively* understand small collision systems!

Ulrich Heinz (OSU, CERN & EMMI)

The Little Bang Standard Model

GSI, 6/12/18 43 / 45

Conclusions

- Signs of hydrodynamic behavior are pervasive in heavy-ion collisions, from high to relatively low energies and from large to small collision systems.
- The Little Bang Standard Model, consisting of (1) QCD-motivated fluctuating initial conditions, (2) a short-lived pre-hydrodynamic stage, followed by (3) (anisotropic) relativistic dissipative fluid dynamics until hadronization and (4) a hadronic cascade to describe the final freeze-out, has been very successful and opens the door for precision spectroscopy of the quark-gluon plasma.
- Small collision systems still provide theoretical challenges: Where does the hydrodynamic approach really break down?

イロト 不得下 イヨト イヨト 二日

Thanks!

(Also, of course, to the many collaborators and friends who contributed to the development of the LBSM)

Ulrich Heinz (OSU, CERN & EMMI)

The Little Bang Standard Model

GSI, 6/12/18 45 / 45

-