The electric dipole moment of the neutron

K.Kirch, ETH Zürich – PSI Villigen, Switzerland

2

Complementary approaches in fundamental particle physics

High Energy

High Intensity

Both test our current understanding of fundamental particles and interactions.

The building blocks

The Standard Model Arbenter

Source: FNAL

Search for new physics

High Energy

High Intensity

direct production of new particle

For example: Search for $\mu \rightarrow e\gamma$

PSI ring cyclotron

- at time of construction a new concept: separated sector ring cyclotron [H.Willax et al.]
- 8 magnets (280t, 1.6-2.1T), 4 accelerating resonators (50MHz), 1 Flattop (150MHz), \oslash 15m
- losses at extraction $\leq 200W$
- reducing losses by increasing RF voltage was main upgrade path [losses ∞ (turn number)³, Joho]
- 590MeV protons at 80%c
- 2.4mA x 590MeV=1.4MW

PSI ring cyclotron

The intensity frontier at PSI: π , μ , UCN

Precision experiments with the lightest unstable particles of their kind

Swiss national laboratory with strong international collaborations

Fundamental physics with muons

Bound state QED

The most precise value of the **proton charge radius** via a measurement of the Lambshift in muonic hydrogen

https://www.psi.ch/muonic-atoms/

- R. Pohl et al., Nature 466 (2010) 213
- A. Antognini et al., Science 339 (2013) 417
- R. Pohl et al., Science 353 (2016) 669

Weak interaction

The most precise measurement of any lifetime: **MuLan**'s μ^+ and a 0.6 ppm determination of the **Fermi coupling constant**

 $\tau = 2 \ 196 \ 980.3 \pm 2.2 \ \text{ps}$ (1.0 ppm)

The most precise measurement (10ppm) of the μ^- lifetime in pure hydrogen yields **MuCap**'s 1% determination of the μ^-p capture rate resolving the longstanding issue with the **Pseudoscalar coupling g**_p

www.npl.washington.edu/muon/ D.M. Webber et al., PRL 106(2011)041803 V.A.Andreev et al., PRL 110(2013)012504

New physics search

The best rare decay limit: A new **search for** $\mu \rightarrow e\gamma$ yields a branching less than 4.2x10⁻¹³

Ultracold Neutron Source & Facility

The PSI UCN source

The Neutron

ETH

Ultracold neutrons

ideal gas with temperature of milli-Kelvin move with velocities of few m/s

Nature has probably violated CP when generating the Baryon asymmetry !?

Observed*: $(n_{B}-n_{\overline{B}}) / n_{\gamma} = 6 \times 10^{-10}$ SM expectation: $(n_{B}-n_{\overline{B}}) / n_{\gamma} \sim 10^{-18}$

Sakharov 1967: B-violation C & CP-violation non-equilibrium [JETP Lett. 5 (1967) 24]

* WMAP + COBE, 2003 $n_B / n_{\gamma} = (6.1 \pm 0.3) \times 10^{-10}$ Neutrons are tiny. EDM are tiny but violate CP. UCN have very low energies. Neutrons are tiny. EDM are tiny but violate CP. UCN have very low energies.

Yet, you will see that they are sensitive to energies of TeV and even up to 10¹⁹GeV.

EDM and symmetries

A nonzero particle EDM violates P, T and, assuming CPT conservation, also CP

Purcell and Ramsey, PR78(1950)807; Lee and Yang; Landau

Connecting experiments and theory

See also: Pospelov, Ritz, Ann. Phys. 318(2005)119

ETH

How to measure the neutron (or other) electric dipole moment ?

24

nEDM at PSI 2009 – 17

Coming from ILL: Sussex-RAL-ILL collaboration PRL 97 (2006) 131801 Upgraded by nEDM@PSI

www.psi.ch/nedm/

ETH

Klaus Kirch GSI, Jun

GSI, June 5, 2018

nEDM at PSI

UK

Ramsey's method with UCN

Ramsey's method with UCN

Frequency ratio R

$$R = \frac{\langle f_{\rm UCN} \rangle}{\langle f_{\rm Hg} \rangle} = \frac{\gamma_{\rm n}}{\gamma_{\rm Hg}} \left(1 \mp \frac{\partial B}{\partial z} \frac{\Delta h}{|B_0|} + \frac{\langle B^2_{\perp} \rangle}{|B_0|^2} \mp \delta_{\rm Earth} + \delta_{\rm Hg-lights} \dots \right)$$

Ę 34

us

LEUVEN

nfl.

(FE)

UNI

UK (QC

The nEDM spectrometer

Searching for the neutron EDM

The energy budget of the Universe

Search for nEDM oscillations with time PHYS. REV. X 7, 041034 (2017)

nEDM search for ultra-light axion dark matter

Oscillating nEDM data could come from the interaction of **ultralight axions** which could be the Dark Matter in the Universe. nEDM places the first laboratory limits. on axion – gluon couplings

Abel et al., PRX7(2017)041034

nEDM collaboration moves on to n2EDM

nEDM collaboration:

50 researchers from 15 institutions and 7 countries. Part of the collaboration in front of nEDM.

Constructing n2EDM

Meanwhile UCN area South has just been cleared of the nEDM setup and is being prepared for n2EDM which will be 10 times more sensitive.

		Current	n2EDM	n2EDM	3101-1-1-
	phase	2016 average	meas.	meas.	
	ID (cm)	47	80	100	
	coating	dPS	dPS	iC	
	α	0.75	0.8	0.8	
	E (kV/cm)	11	15	15	
	T(s)	180	180	180	
	N	15'000	121'000	400'000	
	$\sigma(d_n) \ (e \cdot cm)$ per day	$11{\times}10^{-26}$	2.6×10^{-26}	1.4×10^{-26}	
	$\sigma(d_{\rm n}) \ (e \cdot {\rm cm})$ 500 data days	5.0×10^{-27}	1.2×10^{-27}	6.4×10^{-28}	

Thank you

Zuoz Summer School

August 12-18, 2018

PSI Summer School Particle Flavour Fever

Lyceum Alpinum, Zuoz, August 12–18, 2018

Swiss Academy of Sciences Akademie der Naturwissenschaften Accademia di scienze naturali Académie des sciences naturelles

Swiss Institute of

Particle Physics

sc nat

PAUL SCHERRER INSTITUT

https://www.psi.ch/particle-zuoz-school/ltp-zuoz-summer-school

