

Remote handling for the Super-FRS components

Presenter: F. Amjad

Contributors: H. Weick, C. Karagiannis, C. Schloer, N. Nociforo Partner institutions: KVI-CART university of Groningen CSIR- CMERI, Durgapur

Accelerator Seminar, Darmstadt, March 15, 2018

Presentation Outline

- Introduction to Remote handling
- Remote handling at particle accelerator facilities
- Remote handling classes for Super-FRS components
- Super-FRS components remote handling
- Summary
- Future outlook

Remote Handling introduction and Background

- Combination of technology and engineering systems to enable operators to safely, reliably and repeatedly perform transportation and manipulation of hazardous items without being in personal contact with the handled items.
- Remote Handling enables an operator to do handling work at a particular work site without being physically present at that work site.
- "Human in the Loop": Unlike conventional robotics, Remote Handling always involves a human being with in the process.

GSI Helmholtz Centre for Heavy Ion Research GmbH

rch GmbH F. Amjad/ Super-FRS Remote Handling

Safe

Hazardous

15/03/2018

Remote Handling introduction and Background: Philosophy

- What is remote handling?
 - Handling items from distance and safety
 - "Nuclear" association
- Unknown vs Hazardous
- What is important in remote handling?
 - Task identification
 - Remote viewing
 - Recovery (RAMS)
 - Design for remote handling

Remote Handling introduction

- Where to use remote handling?
 - It is used in hazardous environment with radioactive components where hands-on inspection and maintenance is not possible.
- Remote handling categories:
 - Inspection of hazardous environment
 - Transportation (Transfer of activated parts)
 - Manipulation (Maintenance / disposal of activated parts)

Remote handling at particle accelerator facilities(1/4): Closed tunnel facility (PSI)

Vertical Cross-Section of PSI Beam Line

Target lowered down in hot cell for maintenance

FAIR

Shielding flask on top of beam line

Remote handling at particle accelerator facilities(2/4): Integrated hotcell and target area JSNS

JSNS target area hotcell cross-sectional view

JSNS target and cart assembly

GSI Helmholtz Centre for Heavy Ion Research GmbH

Remote handling at particle accelerator facilities(3/4): HEP facilities (CERN)

TELEMAX used for inspection and visual support

Remote handling at particle accelerator facilities(1/4): Open tunnel facility

ISOLDE (KR 60L45) robots for remote handling

GSI FRS RH KUKA KR 350 robots

GSI Helmholtz Centre for Heavy Ion Research GmbH

Classification of facilities based on remote handling setup

- Four main type of remote handling facilities
 - Closed tunnel: facility is developed with a closed tunnel design concept and a vertical plug system (e.g. PSI, J-PARC)
 - Integrated hotcell and target area: facility builds the hotcell on top of the target area (e.g. SNS, JSNS, SPIRAL 2, FRIB)
 - HEP facilities: facility uses very high-energy beams (LHC) are built with open underground tunnels to provide natural shielding as shielding.
 - Open tunnel: facility was developed with an open tunnel that uses localized shielding around the target area (e.g. FRS, ISOLDE)

Remote handling equipment classification

RH classes for components			
RH Class	Description		
1	Components requiring regular planned replacement.		
2	Components that are Likely to require repairs and replacements.		
3	Components that are not expected to require maintenance or replacement during life time of facility but would need to be replaced remotely in case if they fail.		
4	Components that do not require remote maintenance		

Super-FRS Remote handling scenario

15/03/2018

Target area buidling

Radiation Shielding

GSI Helmholtz Centre for Heavy Ion Research GmbH

Radiation Shielding

~ 10 μSv/h 7 Sv/h

Activation after beam times, but access to maintenance tunnel possible thanks to integrated shielding. Also shielding becomes activated.

15/03/2018

PSI Switzerland same concept, top of chamber

H.Weick

16

Super-FRS target area beamline remote handling positions for shielding flask (60t)

GSI Helmholtz Centre for Heavy Ion Research GmbH

Target Chamber plugs

15/03/2018

C.Karagiannis

GSI Helmholtz Centre for Heavy Ion Research GmbH

Target Chamber plugs Design for remote handling

1.5m

- The target station plugs have the same height, approximately 4000 mm.
- The 1,5 m shielding length is achieved by stacking 15 blocks of 100 mm thickness each.

15/03/2018 university of groningen

3.990m

GSI Helmholtz Centre for Heavy Ion Research GmbH

Self-seeking plug guidance

required: ± 20mm shift, 2 mrad tilt tested up to 70mm and 7 mrad

Plug Test Setup

v university of groningen

Target chamber Detector plug

Beam Catchers contribution of India to FAIR

H.Weick

Beam Catchers contribution of India to FAIR

pumping duct

GSI Helmholtz Centre for Heavy Ion Research GmbH

F. Amjad/ Super-FRS Remote Handling

15/03/2018

Beam catcher Remote handling concept (Modular design)

15/03/2018

CSIR-CMERI Durgapur

FAIR 5

Super-FRS target area plug remote handling requirements

GSI Helmholtz Centre for Heavy Ion Research GmbH

F. Amjad/ Super-

0120 mm

4107 Percel

Super-FRS Shielding flask (2/4) Examples / Arrangement

J-PARC shielding Flask

GSI Helmholtz Centre for Heavy Ion Research GmbH

Super-FRS Shielding flask (3/4) Traverse platform

Traverse plate

Super-FRS Shielding flask (4/4) control signals

Super-FRS Remote handling scenario (Closed tunnel)

GSI Helmholtz Centre for Heavy Ion Research GmbH

GSI Helmholtz Centre for Heavy Ion Research GmbH

Super-FRS Hot cell

Super-FRS Hot cell

Shielding flask parking cell interaction

Target Chamber plugs Design for remote handling

GSI Helmholtz Centre for Heavy Ion Research GmbH

Target Wheel remote maintenance

Target wheel swivel movement

Target wheel and motor in vacuum (regular replacement)

Tool adopted to fit MSM

C.Karagiannis

GSI Helmholtz Centre for Heavy Ion Research GmbH

Remote Handling (video 1)

Remote Handling (video 2)

Super-FRS Remote handling scenario (open tunnel)

Super-FRS Remote handling scenario (open tunnel)

IV planner screen shots of the FLUKA simulations for the Super-FRS tunnel

GSI Helmholtz Centre fo

164m

41

Super-FRS Remote handling scenario (open tunnel) Concept design

Main tunnel RH system

- Six axis (KUKA titan) robot to perform remote manipulation.
- Mobile platform (KUKA Omnimove / AGV) that can transport robot in-between parking position to maintenance region.
- Mobile shielding container to transport activated beamline inserts.
- Power supply, navigation and parking system.
- Automatic media board connection

Robot tools

Remote Handling of beamline inserts (X and Y slits) example

Summary

- Remote handling is required for Super-FRS facility to ensure the maintenance and operation of the facility.
- Super-FRS has both close tunnel and open tunnel remote handling scenarios.
- Super- FRS has both Transportation manipulation and Dexterity manipulation.
- Closed tunnel remote handling
 - Shielding flask will be used to for handling and transfer of activated beamline parts
 - Hotcell will be used to conduct remote maintenance
- Open tunnel remote handling
 - Industrial robotic systems will be used to manipulate and handle beamline inserts
 - maintenance / transfer task sequence needs detailed definition (shielding flask)
- Hot cell will be primary location to maintain, exchange, upgrade and store the beamline inserts activated parts.
- Automatic media board has been developed at GSI.

15/03/2018

Future outlook

- Target area chamber design is in advance stage and will be go through CDR review.
- Beam catcher and detector ladder designs needs to be verified for remote handling using the MSM setup at GSI.
- Shielding flask specification are updated and MOU talks has been agreed to design and develop the Finland inkind contribution to FAIR.
- Open tunnel remote handling system specification and design parameter are under development.
- Analyze from the start the assembly, failure and maintenance scenarios
- Analyze the big picture do not rely on a mystic remote handling device

Thanks / Questions

Super-FRS target area plug remote handling requirements

Beamline Plug	Length	Width	Thickness
Detector Plug	3565mm (500 mm stroke)	457mm	330mm
Target Plug	3653mm (500 mm stroke)	767mm	465mm
Target wheel 450mm Ø			
Beam Catcher	3623mm	806.5mm	480mm
Pillow seal 500mm Ø	2761mm	900mm	90mm
Pillow seal 1200mm Ø	2635mm	1600mm	90mm

GSI Helmholtz Centre for Heavy Ion Research GmbH

Detector / collimator plugs dimension R___

