Closed orbit feedback (COFB) system at GSI SIS18

Speaker: Sajjad Hussain Mirza ${ }^{1,3}$
Contributors: Dr. Rahul Singh ${ }^{1}$
Dr. Peter Forck ${ }^{1}$ (Supervisor)
University affiliation: Prof. Dr. Harald Klingbeil ${ }^{2,3}$
${ }^{1}$ Beam Instrumentation Department, GSI, Darmstadt
${ }^{2}$ Ring RF Department, GSI, Darmstadt
${ }^{3} \mathrm{TEMF}, \mathrm{TU}$, Darmstadt, Germany

TECHNISCHE

Outline

- Introduction
- Introduction to closed orbit in a synchrotron
- Closed orbit perturbation
- Typical examples of closed orbit perturbations in GSI
- Closed orbit correction methods
- Closed control loop
- What's new in SIS18 COFB?
- Model errors
- Dispersion
- Project status
- Conclusions
- Outlook

Guide fields and equations of motion

Hill's equation for on-momentum particle for $K_{x, y}(s)=K_{x, y}(s+L)$

$$
x^{\prime \prime}=\left(\frac{1}{\rho^{2}}-K_{x}(s)\right) x
$$

$$
y^{\prime \prime}=K_{y}(s) y
$$

Solution $\quad y=\sqrt{\epsilon \beta_{y}(s)} \cos \left(\mu_{y}(s)-\delta\right)$
where $\quad \mu(s)=\int_{0}^{s} \frac{1}{\beta(s)} d s$
$\beta(s)$ have the same periodicity in space as $K(s)$

Single particle motion and closed orbit

Closed orbit is measured by averaging the turn by turn orbit over ~ 1000 turns

Why is Closed orbit important?

Field errors and Closed orbit perturbation

"closed orbit" closes back at the location of field error

$$
\left\{y_{c}(0)=y_{c}(L) \quad y_{c}^{\prime}(0)=y_{c}^{\prime}(L)+\theta\right\}
$$

for $\mathrm{s} \neq 0$, the perturbed reference orbit has free betatron oscillations and non-integral frequency

$$
y(s \neq)=\sqrt{\epsilon \beta_{y}(s)} \cos \left(\mu_{y}(s)-\delta\right)
$$

Solution of Hill's equation in this case
θ is the kick provided by field error $\beta(s)$ is the beta function at kick location $\mu(s)$ is the phase advance
Q is the tune of the machine

$$
y_{c}(s)=\theta \frac{\sqrt{\beta\left(s_{0}\right) \beta(s)}}{2 \sin \left(\pi Q_{y}\right)} \cos \left(\left|\mu(s)-\mu_{s 0}\right|-\pi Q_{y}\right)
$$

Closed orbit perturbation (distortion)

\boldsymbol{R} is called the orbit response matrix

$$
[\mathrm{Y}]_{m \times 1}=[R]_{m \times n}[\theta]_{n \times 1}
$$

Closed orbit during CRYRING commissioning

quence Timestamp: 2017-09-27 10:18:04

```
Raw Data Positions Orbit
```

गeriod Index: $0 \quad \square$ as time in μ s averaged over: $1 \quad$ periods
horizontal

$>$ Dotted lines is the "reference or desired orbit"
$>$ Injection is in horizontal plane, mismatched injection and wrong energy settings

Closed orbit distortions in SIS18

1000 turn average during acceleration

Lectures notes on "Pick-ups for bunched beams" by P. Forck in JUAS

Beam perturbations in SIS18 during ramp and injection

Injection

Next topic

- Introduction
- Closed orbit correction methods
- General concept of correction
- Local bump based correction method
- Harmonic correction method
- Singular value decomposition based correction
- A new DFT based correction method and application
- Closed control loop
- What's new in SIS18 COFB?
- Model errors
- Dispersion
- Project status
- Conclusions
- Outlook

General concept of COFB System in a Synchrotron

BPMs (typically $\mathrm{N} \propto 4 \times$ tune) read the beam position which is averaged over ~ 1000 turns to estimate the closed orbit. Controller calculates the required corrector strengths to suppress the oscillations at the required bandwidth

Correctors are dipole magnets whose strength is regarded as angles θ_{i} given to the beam

$$
\theta_{i} \propto B_{k i c k e r}
$$

Note: Diagrams not fit to scale

Local bump orbit correction (Concept of orbit correction)

Correct orbit at one BPM using three steerers while

$$
\begin{aligned}
& \theta_{2}=-\theta_{1} \sqrt{\frac{\beta_{1}}{\beta_{2}}} \frac{\sin \mu_{31}}{\sin \mu_{32}} \\
& \theta_{3}=-\theta_{1} \sqrt{\frac{\beta_{1}}{\beta_{3}}} \frac{\sin \mu_{21}}{\sin \mu_{32}}
\end{aligned}
$$

Repeat the procedure for all BPM positions iteratively until some minimum is reached

So called Sliding bump method!
Was in use at GSI till last beam time!

PhD thesis "Linear and non-linear response matrix and its application to the SIS 18 Synchrotron" by Angelina

Local bump orbit correction in SIS18 (Simulation in MADX)

First bump $\theta_{1}^{\prime} \theta^{\prime}{ }_{2} \quad \theta^{\prime}{ }_{3}$

Second bump $\theta^{\prime \prime}{ }_{2} \quad \theta^{\prime \prime}{ }_{3} \quad \theta^{\prime \prime}{ }_{4}$

Third bump $\quad \theta^{\prime \prime \prime}{ }_{3} \quad \theta^{\prime \prime \prime}{ }_{4} \quad \theta^{\prime \prime \prime}{ }_{5}$

$$
\begin{aligned}
& \theta_{2}^{\prime}=-2 \theta_{1}^{\prime} \cos \Delta \mu \\
& \theta_{3}^{\prime}=-\theta_{1}^{\prime} \\
& \theta^{\prime \prime}{ }_{3}=-2 \theta^{\prime \prime}{ }_{2} \cos \Delta \mu \\
& \theta^{\prime \prime}{ }_{4}=-\theta^{\prime \prime}{ }_{2} \\
& \theta^{\prime \prime \prime}{ }_{4}=-2 \theta^{\prime \prime \prime}{ }_{3} \cos \Delta \mu \\
& \theta^{\prime \prime \prime}{ }_{5}=-\theta^{\prime \prime \prime}{ }_{3}
\end{aligned}
$$

Cross talk between local bumps
Less degrees of freedom
Out of 12 correctors, only 10 can be independent

Concept of global correction

Sinusoidal approximation of disturbance removal

Number and position of BPMs and steerers is important!

Harmonic analysis (global correction)

$$
y_{c}(s)=\theta \frac{\sqrt{\beta\left(s_{0}\right) \beta(s)}}{2 \sin \left(\pi Q_{y}\right)} \cos \left(\left|\mu(s)-\mu_{s 0}\right|-\pi Q_{y}\right)
$$

Perturbed orbit can be Fourier expanded Modes to be removed (corrected) are selected before-hand and measured orbit is fitted over corresponding mode e.g. modes around tune frequency.

Corresponding Fourier coefficients are measured and made zero

$$
y_{i}=\sum_{k=1}^{n}\left(a_{k} \cos k \varphi+b_{k} \sin k \varphi\right)
$$

Corrector strengths are proportional to the Fourier coefficients

Mode switching is possible because of separate channels for each mode

Fitting for each mode is mathematically complicated procedure

Orbit response matrix (ORM) based correction

Matrix containing proportionality constants can be calculated or measured separately

\boldsymbol{R} is called orbit response matrix
(ORM)
Y. Chung, "Closed orbit correction using singular value decomposition of the response matrix", (Argonne National Laboratory, IL, 1993)

Orbit response matrix (ORM) based correction

For a given perturbed orbit, we calculate the corrector strengths which could be responsible for the given perturbations

$$
\left[\begin{array}{c}
\theta_{1} \\
\theta_{2} \\
\theta_{3} \\
\cdot \\
\cdot \\
\cdot \\
\theta_{n}^{-1} \\
\theta_{n}^{-1}
\end{array}\right]=\left[\begin{array}{ccccc}
R_{11} & R_{12} & R_{13} & \cdots & R_{1 n} \\
R_{21} & R_{22} & R_{23} & \cdots & \cdot \\
R_{31} & R_{32} & R_{33} & \cdots & R_{2 n} \\
\cdot & \cdot & \cdot & R_{3 N} \\
\cdot & \cdot & \cdot & \ddots & \cdot \\
\cdot & \cdot & \cdot & & \cdot \\
R_{m-1,1} & R_{m-1,2} & R_{m-1,3} & \cdots \cdots & R_{m-1, n} \\
R_{m 1} & R_{m 2} & R_{m 3} & \cdots \cdots & R_{m n}
\end{array}\right]^{-1}\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
Y_{3} \\
\cdot \\
\cdot \\
\cdot \\
Y_{m}^{-1} \\
Y_{m}^{-1}
\end{array}\right]
$$

Then apply the negatives of the calculated corrector strengths

$$
\left[\begin{array}{c}
-\theta_{1} \\
-\theta_{2} \\
-\theta_{3} \\
\cdot \\
\cdot \\
\cdot \\
-\theta_{n}-1 \\
-\theta_{n}^{-}
\end{array}\right]
$$

1. ORM is not always invertible (for example rectangular)
2. Calculated corrector values are beyond the corrector magnet range

$$
\text { SVD for } \sim \text { ill conditioned ORMs }
$$

SVD -> Quite popular in Darmstadt region

Singular Value Decomposition (SVD)

$$
\begin{gathered}
R=U S V^{T} \\
{\left[\begin{array}{ccc}
R_{11} & \cdots & R_{1 n} \\
\vdots & \ddots & \vdots \\
R_{m 1} & \cdots & R_{m n}
\end{array}\right]=\left[\begin{array}{ccc}
U_{11} & \cdots & U_{1 m} \\
\vdots & \ddots & \vdots \\
U_{m 1} & \cdots & U_{m m}
\end{array}\right]\left[\begin{array}{ccc}
s_{1} & \cdots & 0 \\
\vdots & s_{2} & \vdots \\
0 & \cdots & s_{n}
\end{array}\right]\left[\begin{array}{ccc}
V_{11} & \cdots & V_{1 n} \\
\vdots & \ddots & \vdots \\
V_{n 1} & \cdots & V_{n n}
\end{array}\right]}
\end{gathered}
$$

s_{i} are called singular values arranged as $s_{1}>s_{2}>s_{3} \ldots . s_{n}$
U and V are orthogonal matrices such that

$$
U^{-1}=U^{T} \text { and } V^{-1}=V^{T}
$$

where the columns of U and V are the eigenvectors of RR^{T} and $\mathrm{R}^{\mathrm{T}} \mathrm{R}$
Which helps to find inverse R^{-1} (if R is invertible) as

$$
\left[\begin{array}{ccc}
R_{11} & \cdots & R_{1 n} \\
\vdots & \ddots & \vdots \\
R_{m 1} & \cdots & R_{m n}
\end{array}\right]=\left[\begin{array}{ccc}
V_{11} & \cdots & V_{1 m} \\
\vdots & \ddots & \vdots \\
V_{m 1} & \cdots & V_{m m}
\end{array}\right]\left[\begin{array}{ccc}
1 / s_{1} & \cdots & 0 \\
\vdots & 1 / s_{2} & \vdots \\
0 & \cdots & 1 / s_{n}
\end{array}\right]\left[\begin{array}{ccc}
U_{11} & \cdots & U_{1 n} \\
\vdots & \ddots & \vdots \\
U_{n 1} & \cdots & U_{n n}
\end{array}\right]^{T}
$$

Strengths of SVD

$>$ Columns of U and V are Eigen modes which are orthogonal to each other (linearly independent)
$>$ SVD can decompose and invert (or pseudo-invert) "any" matrix
$>$ A robust algorithm for global orbit correction

Benefits of SVD over harmonic analysis
> One needs not to select the modes to be corrected before correction: decompose in all possible modes
$>$ "simple" matrix inversion
$>$ Modal correction is still possible through selecting certain eigenvalues

SVD of vertical SIS18 ORM

Weaknesses of SVD

는 표

Symmetry exploitation in SIS 18 vertical ORM

$$
\begin{aligned}
& \beta_{b p m 1}=\beta_{b p m} 2=\beta_{\text {bpm } 3} \cdots \cdots=\beta_{b p m 12} \\
& \beta_{\text {corr } 1}=\beta_{\text {corr } 2}=\beta_{\text {corr } 3} \cdots \cdots=\beta_{\text {corr } 12} \\
& \Delta \mu_{b p m}=\text { constant } \\
& \Delta \mu_{\text {corr }}=\text { constant }
\end{aligned}
$$

$$
R=\left[\begin{array}{cccccc}
R_{1} & R_{2} & R_{3} & R_{4} & \cdots & R_{n} \\
R_{n} & R_{1} & R_{2} & R_{3} & \cdots & R_{n-1} \\
R_{n-1} & R_{n} & R_{1} & R_{2} & \cdots & R_{n-2} \\
R_{n-2} & R_{n-1} & R_{n} & R_{1} & \cdots & R_{n-3} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
R_{2} & R_{3} & R_{4} & R_{5} & \cdots & R_{1}
\end{array}\right]
$$

Each row is cyclic shift of previous row.
All diagonal elements are identical.

Such a square matrix is called Circulant Matrix

Diagonalization Circulant matrix

$$
\begin{gathered}
R=\left[\begin{array}{cccccc}
R_{1} & R_{2} & R_{3} & R_{4} & \cdots & R_{n} \\
R_{n} & R_{1} & R_{2} & R_{3} & \cdots & R_{n-1} \\
R_{n-1} & R_{n} & R_{1} & R_{2} & \cdots & R_{n-2} \\
R_{n-2} & R_{n-1} & R_{n} & R_{1} & \cdots & R_{n-3} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
R_{2} & R_{3} & R_{4} & R_{5} & \cdots & R_{1}
\end{array}\right] \\
\sigma_{k}=\sigma_{r k}+j \sigma_{i k}=\sum_{n}^{N-1} R_{n} e^{-j 2 \pi k n / N} \\
\mathrm{R}=\left[\begin{array}{c}
\text { Inverse is straightforward } \\
\left.\begin{array}{ccc}
F_{11} & \cdots & F_{1 m} \\
\vdots & \ddots & \vdots \\
F_{m 1} & \cdots & F_{m m}
\end{array}\right]\left[\begin{array}{ccc}
\sigma_{1} & \cdots & 0 \\
\vdots & \sigma_{2} & \vdots \\
0 & \cdots & \sigma_{n}
\end{array}\right]\left[\begin{array}{ccc}
F_{11} & \cdots & F_{1 n} \\
\vdots & \ddots & \vdots \\
F_{n 1} & \cdots & F_{n n}
\end{array}\right] \\
R^{-1}=F^{*} H^{-1} F \\
H_{k}=F_{k c}+j F_{k s} \\
F_{k s}=\sin \left(\frac{2 \pi k m}{n}+\varphi_{k}\right)
\end{array} \quad \begin{array}{c}
\text { Standard Fourier matrix } \\
\text { containing DFT modes }
\end{array}\right. \\
\end{gathered}
$$

Equivalence of DFT and SVD

Why to do SVD when Circulant symmetry exits?

One quick application: Missing BPM scenario

$\left.\begin{array}{lll}F_{k s}=\sin \left(\frac{2 \pi k m}{n}+\varphi_{k}\right)\end{array} \begin{array}{l}\text { E. } \\ F_{k c}=\cos \left(\frac{2 \pi k m}{n}+\varphi_{k}\right)\end{array}\right)$

One quick application: Missing BPM scenario

Next topic

- Introduction
- Closed orbit correction methods
- Closed control loop
- Feedback loop
- System identification for controller design
- PID controllers
- What's new in SIS18 COFB?
- Model errors
- Dispersion
- Project status
- Conclusions
- Outlook

Feedback loop in orbit correction

Disturbance $D(S)$
Error

Noise

Reference: S. Gayadeen, Fast orbit feedback control in mode space: Proceedings of ICALEPCS 2013

System identification necessary before controller design

System identification necessary before controller design

PID controllers

$>$ Explicit knowledge of model not needed
$>$ Tuning is crucial; several heuristics available
$>$ Can be optimally tuned for first and second order processes
> Perspective: More than 70% industrial controllers based on PID controller
$>$ Model based controller (IMC) is under study for SIS18

Next topic

- Introduction
- Closed orbit correction methods
- Closed control loop
- What's new in SIS18 COFB?
- Model errors
- Dispersion
- Project status
- Conclusions
- Outlook

What are challenges for SIS18 COFB system?

> Higher Bandwidth of the feedback system (light sources call 100 Hz as "high")

- Power supply ripples are coupled to the orbit due to extra thin vacuum chambers (0.3 mm for Quad-chambers)
- faster correction (within ramp)
- Actual realizable bandwidth to be known after system-identification
$>$ Correction during ramp
- Lattice changes during ramp (uncertainties in Lattice parameters)
- Variable ramp rates($100 \mathrm{~ms}-1 \mathrm{~s}$)
> Cycle to cycle magnetic hysteresis
$>$ Dynamic changes in beam energy and intensity (user dependent)
> BPM failures due to radiation shower

Next topic

- Introduction
- Closed orbit correction methods
- Closed control loop
- What's new in SIS18 COFB?
- On ramp correction and Model errors
- On ramp systematic lattice change (constant tune)
- On ramp tune shift
- Image charge tune shift
- Beta beating
- Dispersion
- Project status
- Conclusions
- Outlook

Systematic lattice changes over ramp

Systematic lattice changes over ramp

High residual means bad correction

Orbit correction over ramp of $5 \mathrm{~T} / \mathrm{s}$ (constant tune)

PhD thesis "Tune measurement at GSI SIS18: Methods and Applications" by R. Singh

Orbit correction over ramp of $5 \mathrm{~T} / \mathrm{s}$ (tune variation of 0.01)

Other sources of model errors

Image charge tune shift

Beta beating

Tune shift during ramp

PhD thesis "Tune measurement at GSI SIS18: Methods and Applications" by R. Singh

Next topic

- Introduction
- Closed orbit correction methods
- Closed control loop
- What's new in SIS18 COFB?
- Model errors
- Dispersion
- Project status
- Conclusions
- Outlook

Dispersion(x-plane)

Subtracting dispersion effect from closed orbit

Dispersion effect is usually subtracted from closed orbit before correction

SVD modes of SIS18 ORM

Because of symmetry in SIS18, the major coupling of dispersion effect is with DC mode DC mode truncation can ignore the dispersion effect without measurement?
EEII

Next topic

- Introduction
- Closed orbit correction methods
- Closed control loop
- What's new in SIS18 COFB?
- Model errors
- Dispersion
- Project status
- Mid-term goals
- Final goals
- Conclusions
- Outlook

Medium term goals

Model errors might have significant importance But we shall start from simpler system realization

Mid-term goals

Commissioning of the simpler system for the time resolution:
$>$ for operation on flat up energy instead of ramp
$>$ at low currents ignoring image charge tune shift
> Using simple PI controller

Final goal:

> Model predictive fast robust controller
EEII

Hardware Status

> Hardware (BPM+ Magnet correction calculation) delivered
$>$ PID controller implemented for mode-base correction
$>$ FESA class programming (design specifications)
$>$ Digital magnet interface (ACU system) is
 under installation for remaining two horizontal steerers, 10 are already installed
$>$ (Thanks to Power Supply Group)
$>$ Data available at 10 kHz rate
$>$ Latency of loop $\sim 30 \mu \mathrm{~s}$

Conclusions

$>$ DFT based decomposition blends the benefits of both SVD and Harmonic correction
$>$ DFT modes are shown to provide robustness against missing BPMs (simulations)
> Systematic lattice changes during ramp does not seem to be crucial (based on simulations): A finite number of orbit response matrices can be used
$>$ The non-systematic tune shift during ramp have extra contribution in residual orbit
$>$ Image charge tune shift and effect of beta beating are also being modelled.
$>$ Dispersion effect in horizontal closed orbit can saturate the correctors
$>$ Outlook:
> Installation of "I-tech" hardware
$>$ Measurement of parameter uncertainties in next beam time
$>$ Measurement of transfer functions of powers supplies and corrector magnets
$>$ Simulations of advanced model predictive controllers

Acknowledgements

David Ondreka (Control)
Stefan Sorge (MADX)
Horst Welker (Power supply)

Carsten Muehle (Magnets),
Franz Klos (Magnets)
Andreas Kraemer (Vacuum chambers)

Extra slides

Internal model control (IMC)

Disturbance $D(S)$

Error

$$
T(s)=\left(\frac{Y(s)}{X(s)}\right)_{D(s), N(s)=0}=Q(s) G(s)
$$

Reactive yet stable! Find the process model!
$>$ Stability condition reduced to only finding a stable $\mathrm{Q}(\mathrm{s})$
$>$ Can be written in an PID equivalent form
> Model knowledge can lead to stable and analytically tractable PID tuning

Non-systematic lattice changes over ramp

Uncertainty modeling in ORM is required
First hint on need of robust controller

Orbit correction over ramp of $5 \mathrm{~T} / \mathrm{s}$ (tune variation of 0.01)

Image charge tune shift

Image charge in the Vacuum chamber act like a defocusing field causing a negative coherent tune shift

프표표

Image charge tune shift simulation

Effect of image charge tune shift on closed orbit

 correction

Effect of beta beating

Effect of beta beating

Harmonic analysis (global correction)

Corrector strengths are proportional to the Fourier coefficients

Mode switching is possible because of separate channels for each mode

Complexity:

Single particle motion and closed orbit

$$
x^{\prime \prime}=\left(\frac{1}{\rho^{2}}-K_{x}(s)\right) x \quad y^{\prime \prime}=K_{y}(s) y
$$

Solution $\quad y=\sqrt{\epsilon \beta_{y}(s)} \cos \left(\mu_{y}(s)-\delta\right)$

$$
\text { where } \quad \mu(s)=\int_{0}^{s} \frac{1}{\beta(s)} d s
$$

$\beta(s)$ have the same periodicity in space as $K(s)$

Tune=:Number of Betatron oscillations over one turn

Single particle motion and closed orbit

M.Sands, The Physics of Electron Storage Rings: An Introduction, Conf. Proc. C6906161

$$
y=\sqrt{\epsilon \beta_{y}(s)} \cos \left(\mu_{y}(s)-\delta\right)
$$

Pseudo-harmonic oscillations modulated by sqrt. of beta function

Tune $=$ Number of betatron
oscillations over one turn

Subtracting dispersion effect from closed orbit

Dispersion effect is usually subtracted from closed orbit before correction

SVD modes of SIS18 ORM

Because of symmetry in SIS18, the major coupling of dispersion effect is with DC mode DC mode truncation can ignore the dispersion effect without measurement?
토표

