Lmd Offline Software

Stefan Pflüger

The Goal & Concept

Goal: measure luminosity L with highest possible accuracy and precision

 $\mathsf{N}=\mathsf{L}\times \sigma$

Idea: pick well known cross section σ and measure number of events N \rightarrow obtain luminosity L

- cross section: elastic $\bar{p}p$ scattering \rightarrow measure at small angles (close to beampipe far behind IP)
- measure tracks @ Imd to reduce systematic effects (background and $\bar{p}p$ beam imperfections)
- **fit 2D** track angle distribution $N(\theta, \phi)$ to cross section model $\sigma(\theta, \phi)$
- <u>But:</u> because N includes for example the detector acceptance and resolution, either N or σ have to be modified for direct comparison \rightarrow here: mostly modify σ !

Track Reconstruction

1st part of the Lmd offline software

(most code written by A. Karavdina) Input: Lmd detector digis (event based)

Output/Goal: Imd track parameters

Notes:

- Fairroot/Pandaroot can simulate input (using Geant+ROOT)
- Detector alignment is a separate module (see Roman's talk afterwards)

1. Hit Reconstruction

- convert digi info to 3D point
- hit clustering
- optional: merging hits from different sides of planes

- 1. Hit Reconstruction
- 2. Track Search
 - find hits that make a meaningful track candidate
 - two methods available: cellular automaton (CA) track following

- 1. Hit Reconstruction
- 2. Track Search
- 3. Track Fit
 - fit track candidate to obtain precise track parameters + errors
 - using broken line model

- 1. Hit Reconstruction
- 2. Track Search
- 3. Track Fit
- 4. Track Filtering (1st)
 - \circ filter out "good" $ar{p}$ tracks based on characteristic track parameters
 - using multivariate analysis (MVA)

- 1. Hit Reconstruction
- 2. Track Search
- 3. Track Fit
- 4. Track Filtering (1st)
- 5. IP Backtracking
 - propagate tracks to IP to avoid difficult modification of σ (magnetic fields)
 - using Geane (Geant3) and point of closest approach (PCA) to IP

- 1. Hit Reconstruction
- 2. Track Search
- 3. Track Fit
- 4. Track Filtering (1st)
- 5. IP Backtracking
- 6. Track Filtering (2nd)
 - \circ filter out "good" $ar{p}$ tracks mainly based on track position info
 - deviation for background tracks, due to "wrong" momentum assumption

Luminosity Fit

2nd part of the Imd offline software

(by Stefan Pflüger)

Input: Track parameters (event based)

Output: time-integrated luminosity

Notes:

- modification of the cross section is necessary
- separate framework (<u>https://github.com/spflueger/LuminosityFi</u>t)

For all plots in this section: 1.5 GeV/c antiproton beam momentum

Luminosity Fit

Steps of Basic Workflow:

- 1. coordinate transformations from $t \rightarrow \theta \rightarrow \theta_{x,y}$ (is special coordinate system simplifying
- 2. detector acceptance correction
- 3. detector resolution correction

fit uses binned extended log likelihood estimator (typical binning 300x300)

Lmd Acceptance & Resolution

Exemplary Fit Result

simulated 2d track angles

corrected cross-section model

- 1. determine IP distribution (used in acceptance correction later on)
 - a. IP mean determined from track position parameters
 - b. IP distribution shape is assumed (normal distribution)
- 2. coordinate transformations from $t \rightarrow \theta \rightarrow \theta_{x,y}$
- 3. \bar{p} beam corrections
 - a. beam distribution shape (divergence) is assumed (here normal distribution, but width is used in fit)
 - b. beam tilt is additional transformation: $\theta'_{x,y} \rightarrow \theta_{x,y} + \text{tilt}_{x,y}$ (tilt_{x,y} are fit parameters)
- 4. detector acceptance correction
- 5. detector resolution correction

Measurement of IP shift

|Pshift reconstruction | | accuracy below 50 µm Simulation: IP shifts of 0, 1, 3.5 mm

Reconstructed IP shifts

50 = 50# of tracks / 0.12mm $\mu = -3.54 \pm 0.002 \text{ mm}$ + = 40 y_{IP} /mm n 30 20 Ŧ -40-20 $\Delta y_{\rm IP}$ / μ m 10 $\Delta x_{
m IP}$ / $\mu {
m m}$. II Ŧ II TI 0 Ŧ -20 0 -2 -30 -20 -100 20 30 -3 10 -4 -1 1 2 3 0 Λ $x_{
m IP}$ /mm x^{Rec} /mm

Influence of IP shift on Luminosity

w/o correction

with correction

Realistic Scenarios

The Luminosity Fit software is able to:

- extract IP shifts with accuracy 50 µm
- extract antiproton beam tilts with accuracy 3-30 μrad (for p_{lab} 1.5 15 GeV/c)*
- extract antiproton beam divergence with accuracy ~20 µrad*
 (BUT: only works for divergences above 200µrad and low energies)
- Includes most systematic effects
 - remaining systematic effects: hadronic elastic scattering cross section, misalignments, (inelastic background)**, geometry model and magnetic field maps in the simulation
- And most importantly, the luminosity is extracted with

^{*} when the accuracy decreases the influence on the extracted luminosity decreases likewise

^{**}background is generally reduced to approx. 0.2%

Relative Systematic Uncertainty of Luminosity*: ~ 0.5%

* excludes huge uncertainty of several % for the hadronic part of elastic cross section (improvement from KOALA experiment to be expected)

The End Thanks for your attention!

Antiproton Beam Tilt

Antiproton Beam Divergence

