ICP based Software Alignment at Lumi

Progress Report

Roman Klasen | roklasen@uni-mainz.de

Software vs. Hardware Alignment

Hardware Alignment

Measurements of component positions with:

- Laser Trackers
- Theodolites
- Rulers
- etc.

Software Alignment

Determination of component positions with:

- measurement data
- cosmic rays
- etc.

Both methods give actual positions of components. This talk is about software only.

Shift Detector vs. Shift Data

Shift Detector

- Realistic Detector Acceptance
- Realistic scenario for Track Finder, Fitter etc.
- But need to generate MC Data again (esp. If you want multiple misaligned geometries)

Shift Data

- Can use existing MC data
- Wrong detector acceptance may lead to implausible tracks:
- Don't see some tracks that should be there
- See tracks that can't be there

I shifted the detector components and generated new MC data on which the Software Alignment ran.

Alignable Components

Sensor Alignment with overlapping Areas

Software Parameters

- We used multiple Geometries
- We Misalign Sensors only
- We allow XY Shift and z-Rotation only
- Enough data for ~ 10^5 pairs/area

We can reach all sensors just be stepping from sensor to sensor by their overlapping areas

We compare the found alignment matrices with the ones provided to the simulation

Estimate Quality of Alignment

Misalign Parameters

Use a fixed relation shift -> rotation

We'll use these shorthands

- **0**μ : perfect geometry
- **10**μ : 10μm shift, 250μrad rot
- **50**µ : 50µm shift, 1.25mrad rot
- **100**µ : 100µm shift, 2.5 mrad rot
- **200**µ : 200µm shift, 5.0 mrad rot

0μ - perfect geometry

Conclusion

Software alignment using the overlapping areas of two sensors using an ICP algorithm works.

The results are consistent even when the misalignment between two sensors is large.