MuPix8: Current Satus

 PANDA Collaboration Meeting 2018/1 – Luminosity Detector Session

> René Hagdorn Darmstadt, March 7, 2018

The MuPix8 Chip

- Physical size: 19.5 × 10.8 mm²
- Active area: ~ 16.2 × 10.2 mm²
- Matrix: 200 × 128 Pixels divided into 3 Submatrices A: Source follower, B & C: current driver
- Pixel: 80 × 81 µm², single diode
- 4 LVDS links @ 1.25 Gbit/s
- Timewalk compensation by two-stage comparator scheme
- Temperature diode
- On chip state machine (works only if slowed down)

10.8 mm

– Testbeam Measurements –

- Several test beams @ DESY (October December 2017)
- 4-layer telescope of MuPix8 + 2 scintillating tiles

Efficiency

• Efficiency > 95 %

• Noise rate < 1 Hz

Efficiency: Thresholdscan

Plots by Mu3e-Group Heidelberg

Wide plateau region
 Noise corrected

Timing

- Using scintillating tiles as reference
- Time resolution dependent of row position (probably because of line capacities)
- Row and column dependend delay (presumably due to voltage drop and/or clock distribution)

– Lab Measurements –

Amplifier Output

- New feature: Read out analog signal from amplifier
- ⁵⁵Fe (5.9 keV photon) @ 0V HV: AmpOut ~ 100 mV (and ToT ~ 1.3 μs)
- Equivalent injection voltage: ~ 250 mV
- Measured peak-to-peak noise: ~ 20 mV
 - \rightarrow estimated SNR ~ 17 (assuming uniform noise distribution)

Plots by Mu3e-Group Heidelberg

March 7, 2018

René Hagdorn

MuPix8

Amplifier Output II

Injection voltage for Fe-equivalent output depends on pixel row (probably due to line capacity) 270 E

Plots by Mu3e-Group Heidelberg

AmpOut goes into saturation, shape no longer triangular, ToTs less affected

René Hagdorn

MuPix8

March 7, 2018

- AmpOut signal of injected pixel compared to signal measured at neigboring AmpOut
- Crosstalk $\leq 10 \%$

HV Dependence of Signal

- HV dependence: depletion layer thickness / sensor capacity $\propto \! \sqrt{HV}$ but signals show only little dependence on HV

Software

- Written in C++, Qt for GUI designs
- Sensorboard interface:
 - Thresholds
 - Injections
 - Addresses
- Currently working on ChipDAC interface

	BoardDACs _ C X
TRB address MuPix address	Set MuPix address Read back MuPix address
Threshold Settings	Injection Settings
Thes low [mV]	Amplitude [V]
Thres high [mV]	Duration [ns]
Thres Pix [mV]	Frequency [Hz]
	Injection Mode
	🔘 Fixed Number 💿 Continuous
	# of Injections
Set Threshold DACs	
Set Injection DAC	Start Injections
	Set Board DACs

René Hagdorn

March 7, 2018

- First tests of MuPix8 performed at testbeams and in lab
- Efficiency > 95 %, noise below 1 Hz
- Time resolution ~ 24.5 ns

but: There is still a lot of testbeam data to analyse

- New features like AmpOut
- Some don't work as intended
- Causes of (some) problems identified
- Development of Software progressing

15

– Backup –

⁹⁰Sr-Hitmap & Eye Diagram

⁹⁰Sr Hitmap

Submatrices

René Hagdorn

March 7, 2018

Timewalk Compensation

Temperature Diode

MuPix8

René Hagdorn

Timing with Increased Supply Voltage

Row (In-)Dependence of ⁵⁵Fe-Signal

